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Perks of giving talk at later time in conference!

Machine learning talk by Quasar spectra shown in
Mohamed Kubiti multiple talks
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Quasar spectra

redshifts
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Therefore, depending on the ContmuuQ
e absorption redshift, z, Y
e Column density, NHI,

e Doppler width, b.

We find absorption line in the spectrum of
quasar.

https://socratic.org



Background
quasar

Two parameters b and

N decide the shape of
these absorption lines
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Extinction Corrected Quasar Composite
Spectrum & Uncertainty

VOigt prOfi Ie Best~fit Solution & 10-|evel constrains

(B) log N,=19.83£0.15 (A) log N,=20.62£0.12

Gaussian, Lorentzian and Voigt profiles

Gaussian
- Lorentzian
—— Voigt

Wavelength(A

The distribution of the Lya forest lines in ) ) ] w e T
Doppler parameter—column density ‘ ] ' A .
(b—N) space is a distorted map of the
density—temperature relation, and can !

be used to constrain the latter. T(p), in ' St : . e
turn, contains information on the epoch

of reionization and reheating and on the S OO Thescbservedlcalim

density is a fairly good tracer of the Becker et al. 2011: The smoothness of the lines

sources of ionizing radiation a Becke 11;
overdensities is a fairly good indicator of the temperature




Thermal history of [GM

e The relation between b and N would
correspond to a relation between T
and density.

e The temperature will provide
thermal history of the IGM.
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* The temperature - density relation T=To~
Competition between photoelectric heating and adiabatic cooling
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e dN/dz e (1 +2)"

e dN/dz will decrease towards decreasing redshift.
Evolution in the ionizing background will also affect the
number of absorption systems lying above the column
density threshold, and this is a major factor in the
evolution of dN/dz. Some evolution is expected as a
result of the expansion of the Universe.

e Also, calculate effective optical depth and mean free path
of IGM.



7 ' Ly forest at z~0.4, Age of Universe ~ 10 Gyr

4600

Spectra credit: Kavli Institute for Cosmology, CamB .: &

iropean Southern C

400 thousand

4 WA » ,‘_,..
“Aﬂ “ l‘ “I}U‘h\ﬁv .Iv-lrrd,’\\ "I'IT Wﬂy-—q("f‘] |r e

Ly« forest at =~ 3, Age of Universe ~ 2 Gyr

*‘r'ﬂ' A

J/“wl
l|'

.8 billion

\
\

Bm 2
-~
33 TN '
ol %
o8 % \ .
S
The Dark Age gg + : p - ' Present day
» ’ .
39" A I* » - / ¢
dep=n i 1
w »
e ¥ AL .
AR Reionization 2P i ' . . g
ully 1onize el < - » Fully ionize s
| i | | 1 I -
1000 100 10 1

1*Redshift

https://www.google.com/url-history-of-big-bang-science
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Simulated data

Training ML Model Prediction
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> We have simulated training and testing datasets for various column T
densities and temperature.

> We developed machine learning algorithm which will be trained
using these training data sets and verified by using the testing

Normalised flux
o

data sets. U
> We use this trained model to predict the parameters for the = v
absorption lines in the Lya forest for the real data observed from B I

Velocity km/s

HST.



Simulated data as true as real data
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Machine learning

e \We are going to use machine
learning to predict the b and N
parameters without actually fitting
the voigt profile!!!

g8
-+a = Q — s _’!_’ e What takes hours will be done in

Input Analyze Find Predictions Stores the seconds!!!
Data Data Patterns Feedback

How does
Machine Learning
work?

™\

Data ’

https://i1.wp.com/junaidsshaikh.com/wp-content/uploads/2020/02/How_Does_Machine_Learning_Work.png?resize=750%2C422&ssl|=1 N

‘ Classification ‘

(DNN) '
e How well the model is working depends how good it is L o
predicted the true labels. ,/—Ii\, ‘
Single line Double line
e Here we use two algorithms: e ,  E i ‘

o Classification: DNN | |
o Regression: CNN - ( |

| N1, N2, by, by,
AV

Jalan et. al (2023) in prep.
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Output

2.5 M dataset Pooling ooling Pooling
80% training
20% testing !

RelU RelU RelU

Fully
Connected

Feature Maps nnec

Feature extraction Regressi Predicted
parameters

Adam
Leaky RelLU
MSE
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Real data N=1
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Summary

We have developed a deep neural network to classify the number of absorption lines and found
accuracy of 94%.

We have developed a convolutional neural network to estimate the parameters of the absorption
lines for simulated data and find the predicted values consistent with true values

We tested these algorithms on quasar spectra observed by HST (Danforth et. al 2016).

We find that the classification algorithm for real observed data has accuracy of 90%.

The caveat is presence of two absorption lines with same absorption redshift are identified as one.
The parameters estimated for correctly identified absorption lines are consistent with true values
estimated by manual fitting and semi-automated codes from Danforth et. al (2016) and Prakash et.
al (2018).

For more detail contact me on pjalan@cft.edu.pl
Why did the machine learning model go to the therapist?

Because it had too many hidden layers and couldn't express its emotions properly!
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Quasar Spectra

As the radiation passes from quasar % i-‘l A \é M g
through the intergalactic medium towards = T T -
the observer the imprint of the materialis " ;ﬁ‘-"l.»!.s:\ & "

available in the quasar spectra.

4

> Absorption: as long as emission source is

there we will see absorption 5
]
-‘S '
> Can be traced to very high redshifts g
m Redshift=A__ /A -1 =
obs " rest | |
800 7000 1200 7400 1600 »
Colour (wavelength) of light/A Andrew Pontzen

> |GM is ionized by the UVB radiation (1
particle in 1 cubic meter and 1 particle in
10*is neutral).


http://www.youtube.com/watch?v=6Bn7Ka0Tjjw

Extra slides

Al is the overarching term for algorithms that
examine data to find patterns and solutions. Artificial
intelligence resembles the human ability to problem
solve. Most Al projects use either machine learning
or deep learning.

Machine learning is a type of artificial intelligence
that uses data and an algorithm to solve one or
more problems.

Deep learning is an advanced type of machine
learning that uses neural networks to learn and
make predictions using unstructured data.
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