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Abstract. Nonstandard (Leibnitz) analysis, based on nonstandard real numbers *R, intro-
duces a specific mathematical method, as well as a way of thinking. It introduces actual

infinitely small quantities and infinitely large quantities. Therefore, it gives good ground in 
considering physical systems which in idealized form have infinitely many degrees of 
freedom. Definitions and proofs are more intuitive, and its use is natural and intuitive 
whenever the considered physical system is composed of infinitely many particles. There 
are a lot of applications of nonstandard analysis based on this assumption in mathematical 
physics, in particular in quantum mechanics, fluid mechanics, dynamical systems, etc.  
Here, we discuss cometary trajectories, in particular the parabolic one, from the standpoint 
of nonstandard analysis. It appears that in a sense every parabola is an ellipse.  Or from the 
standard point of view, every parabola P is a limit curve of a family F of confocal and cop-
lanar ellipses. In a sense, the parabola P is also the envelope of the family F. Based on the 
observed data, this approach gives also a good mathematical model of paths of comets.  In 
addition, this paper is written in order to promote the use of methods of nonstandard analy-
sis in astronomy. 

1. INTRODUCTION 

 The standard approach to physics is based on mathematics over R, the field of 
real numbers. This structure is archimedean, i.e. it does not admit explicitely infi-
nite quantities.  We have no way of knowledge what a line in physical space is re-
ally like. It might be like the real line R, the hyper-real line *R which contains in-
finitesimals and infinite numbers, or neither. However, in applications of the ma-
thematical analysis it is helpful to imagine a line in a physical space as *R. The 
hyper-real line is, like the real line, a useful mathematical model for a line in the 
physical space. One of the aims of this paper is to popularize the use of methods 
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from nonstandard analysis (also known as Leibnitz analysis, non-archimedean 
analysis or Robinson’s analysis) in studies of certain phenomena in astronomy. 
Here we shall discuss trajectories of comets from the stand point of Nonstandard 
analysis. 

2. NONSTANDARD ANALYSIS 

First, let us review the basic notions of nonstandard analysis. Newton and Leibnitz 
independently from each other developed differential calculus. By infinitesimals 
Leibnitz assumed ''infinitely small numbers", and he performed the usual algebraic 
operations over them exactly in the same way as he did with real numbers. In par-
ticular, each positive infinitesimal  in this contemplation was lesser than any or-
dinary real (standard) positive number, while 1/  was greater than any standard 
positive number, i.e.  1/  is an infinite number.  The following rule was implicitly 
supposed:

Leibnitz principle: Every mathematical proposition that is true for finite (real) 

numbers is also true for the extended system (i.e.  system with infinite numbers), 

and vice versa.  

The major difficulty of Leibnitz's approach was a number of paradoxes and a 
lack of formal framework for consistent foundation of infinitesimal calculus. In-
troducing Weierstrass analysis the infinite quantities are expelled, for example the 
notion of the infinitesimal is replaced by the  -  formalism. In particular, zero-
sequences (i.e. sequences are seen as infinitesimals. However, this is only an aux-
iliary notion there, and they lack the use of all algebraic operation (such as divi-
sion) over them. 

Abraham Robinson in Robinson (1961) solved the 300 years old problem of 
foundation of infinitesimal calculus. He founded Leibnitz analysis, i.e. introduced 
actual infinitely small and infinitely large numbers. They admit not only all alge-
braic operations, but also an application of usual functions from analysis (such as 
sin, cos, exp etc) over them. Robinson's solution was based on certain construc-
tions and techniques from mathematical logic, such as the ultraproducts, the Com-
pactness theorem and saturated models. The reader can find details about these no-
tions in Chang and Keisler (1990). 

The nonstandard analysis is based on properties of *R and the transfer principle 
( oš theorem), the counterpart of the Leibnitz principle, which exchange proposi-
tions between *R and R. The nonstandard analysis has been used since then in ex-
plaining certain phenomena in physics, in particular in statistical physics and 
quantum mechanics (e.g.  Anderson, 1976; Albeverio et al., 1986). 

Mathematical models of nonstandard analysis are non-archimedean real fields 
enriched with nonstandard counterparts of notions of the mathematical analysis: 
elementary functions sin(x), ln(x), …, sets: natural numbers N,  integers Z, ration-
al numbers Q, etc. As they are non-archimedean, they contain infinitesimals and 
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infinite quantities. We can do the same constructions with more complex struc-
tures.  We can build the nonstandard enlargement of any infinite structure: com-
plex numbers C, the space of real sequences RN, the space of real functions RR,
each having the metric on our choice; then infinite functional, geometrical and to-
pological spaces. This construction simply allows us to do nonstandard but consis-
tent mathematics.  Leibnitz transfer principle enables one to translate theorems 
expressed by special, so called internal formulas from nonstandard universe to the 
standard one. Another useful property is expressed by the following theorem

Theorem (Extension property).   Every function  f: R R  can be extended to f:
*R *R  which preserves all first order properties of  f.

For example, if  f(x)= sin(x), g(x)= cos(x), since   sin(x + y) = sin(x)cos(y) + 
cos(x)sin(y),  the same identity holds for *f(x) = *sin(x) and *g(x) = *cos(x). Some-
thing similar is true for analytical continuations of real functions, but only for 
identities. In nonstandard analysis all first-order properties are preserved, includ-
ing monotonicity, properties of zeros, etc. It is customary that the asterisk * is
omitted in the case of elementary functions. So, sin(x) will denote *sin(x) in *R as 
well.

Another useful notion in nonstandard analysis is monads. An element a *R is 
finite if there is positive integer n such that –n < a < n. By *Rfin we shall denote 
the set of all finite elements of *R. The galaxy of a is the set (a) of nonstandard 
real numbers b such that a - b is finite. In particular, *Rfin = (0). The mapping st:
*Rfin R (standard part) is defined by st(x)= supR{y: y < x}. An infinitesimal is 
each finite  such that st( ) = st(0) = 0. The monad of 0 is the set µ(0) of all infini-
tesimals. Note that µ(0) is closed under addition and multiplication.  Further, we 
say that numbers a and b are infinitely close, denoted by a  b, if  a - b  µ(0). In 
fact, µ(0) is the kernel of epimorphism st and it is a maximal ideal of the ring *Rfin

The other monads we get by translations, i.e. µ(a)= a + µ(0).  
By use of homomorphism st one can replace the  -  formalism by algebraic 

identities. Let us illustrate this with several examples: 

1. f: R R  is continuous iff (if and only if) for all a *Rfin,  st(*f(a))=f(st(a)).  

2. Let f: R R be a differentiable function and let  0 be an infinitesimal. Then 
f(x)' = st(*f (x + ) - f(x)/  ).  For example,   (x2)'=  st(x2 + 2x  + 2-x2)/   =  st(2x 
+ ) =  2x. 

3.  If f  is a continuous function, then   the Riemann integral of  f on  the interval  

[0,1]  may be defined as  1/H
i=0

H *f(i/H),  where H  is an infinite number, i.e. H
*N \ N.

Detailed development of nonstandard analysis one can find in Stroyan and 
Luxemburg (1976). 
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Examples in Geometry and Astronomy. 

As we saw, nonstandard analysis introduces actual infinitely small quantities 
and infinitely large quantities. Therefore, it gives good ground in considering 
physical systems which in idealized form have infinitely many degrees of free-
dom. Definitions and proofs are more intuitive, and it's use is natural and intuitive 
whenever the considered (idealized) physical system is composed of infinitely 
many particles. As an example, let us first consider Dirac delta function. 

1. Dirac   – function.   Let a(t)= exp(-1/(1-|t|2))  if  |t| < 1,  a(t)=0 otherwise. This 
is a simple variation of Cauchy's flat function, and it belongs to the space E   of 
infinitely many differentiable functions. Let  be a positive infinitesimal, and let 

b(t)= a(t/ ). Finally, let k = 
-

  b(t)dt  and let (t)= b(t)/k = a(t/ )/k. Then (t) be-

longs to  *E , it is positive, and has integral one. In fact, it is what is expected; (t) 
is a finite compact distribution and it has all properties attributed to the Dirac 
function. 

2. Tiling the Euclidean plane, Hao-Wang dominoes problem.  If there is a cov-
ering by the certain pattern of the finite type  of each bounded domain in the plain 
such as squares and circles, prove that there is a cover of the type  of the entire 
plane. One solution goes like this: by the Extension principle, we can find the cov-
ering C of the type *  of a square with edges having the infinite length H, i.e. H
*N \ N. Since  is finite, we have *  = . Therefore, this particular nonstandard 
cover induces the covering of the entire Euclidean plane by restricting C to the 
standard (finite) part of *R x*R.

In this example we have seen how to extend certain local property to the global 
one. We can try to interpret this covering property to the foundation of fundamen-
tal cosmological principles. Namely, all observations from the Earth are local, 
even in the large scale. But observations in the large scale show that the Universe 
is homogeneous and isotropic. Identifying observations with tiling, we see at once 
that we may assume two basic cosmological principles: homogeneity and isotropy 
of the Universe. Therefore, from the mathematical point of view at least it is con-
sistent to assume so. 

3. ELLIPSE IN THE NONSTANDARD PLANE 

Let E be an ellipse having foci at the points (p,0) and (q,0) where p>0 is a positive 
real number and q>0 is an infinite real number. Then all standard points of E, i.e. 
the points lying in the real plane R2, are the points of loci of an "ordinary" parabo-
la P having the focus at (p,0). We show that P is the envelope of the family of all 
(standard) ellipses having one focus in (p,0) and the other one in (b,0), b is a posi-
tive real number. 
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Figure 1: The ellipse having the foci 
in (p,0) and (q,0) with the vertex at 
the coordinate origin and l1+l2= d, 
d=p+q, where l1 and l2 are  distances 
of a point on the ellipse from the fo-
ci.

From the stated assumptions on the ellipse E, see Figure 1, we infer the following 
equations:
             l1 + l2 =  d,            
                  l1

2      =  (x-p)2 + y2,                                                                  (1)  
                    l2

2 =  (x-q)2+ y2.

By eliminating  l1 and l2  from the set of formulas (1), we  obtain   the equation of 
the ellipse E: 

                   y2 = 4px - 4p(p(p + q)x + qx2)/(p + q)2                                                (2) 

 We can interpret the formula (2) in the following two ways. 

1.  Ellipse in the nonstandard plane.  Assume that p  R and that x *R is finite 
and q *R is infinite. Then the term 

               4p(p(p + q)x + qx2)/(p + q)2                                                         (3) 

is an infinitesimal, while 4px is finite. So y is also finite and y2  4px. Hence st(y)2

= 4p st(x), so by replacing st(x) by x and st(y) by y we obtain the equation y2 =
4px of parabola. Therefore, the standard part of the ellipse E in the nonstandard 
plane with the finite focus (p,0) and the infinite focus (q,0) is the parabola P de-
termined by the equation y2 = 4px. Observe that P does not depend on the choice 
of the infinite focus (q,0). 
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Figure 3: Family of confocal ellipses. 

Figure 2: The ellipse E in the nonstandard plane. 

It should be mentioned that all geometric and differential properties of the pa-
rabola P can be derived from the properties of the ellipse E. For example, the opti-
cal property that if a ray of light travels parallel to the symmetry axis of a parabola 
and strikes the concave side of the parabola, then it will be reflected to the focus 
follows immediately from the corresponding optical property of the ellipse E.  Just 
note that if a ray r is coming from the (infinite) focus (q,0) it reflects from the el-
lipse to  the focus (p,0) and that the standard part of r is a line parallel to the x-
axis.

2. Family of confocal ellipses.

We may take (2) as the equa-
tion of the family of (stan-
dard) ellipses sharing the 
fixed focus (p,0), while the 
second focus (q,0) runs over 
the x-axis. Observe that from 
the astrodynamics point of 
view this family of ellipses 
may be regarded as Hoh-
mann-Vetchinkin transfer or-
bits connecting co-planar cir-
cular orbits. We see that the 
parabola P is the limit curve 
enveloping ellipses from this 

family. However, it should be mentioned that P is not the envelope of the family 
of ellipses given by the equation (2) as it is defined in mathematical analysis. 
Namely, if a family of plane curves are given by a formula F(x,y,q) = 0, q is a pa-
rameter, then the mathematical envelope of this family is a curve touching each 
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member of the family. The equation of the envelope is obtained by elimination of 
q from the system of equations F(x,y,q)= 0,  F(x,y,q)/ x = 0. In our case,  
F(x,y,q) = y2 - 4px + 4p(p(p + q)x + qx2)/(p + q)2, and it is easily found that the 
envelope is in fact the critical point x = 0, y = 0, the aphelia of q-ellipses. 

4.  COMETARY ORBITS 

Most cometary orbits are very elongated. Namely, every cometary trajectory 
which is observed as parabolic actually is elliptical as further calculations show. 
But, the second focus is too remote to measure it. Many physical quantities related 
to the very elongated cometary orbits change for several orders of magnitude. For 
example, if the value of the velocity at the perihelion is assumed to be standard, 
then the velocity at aphelion may be taken as an infinitesimal. Therefore, we shall 
consider cometary trajectories assuming nonstandard analysis. By our considera-
tion in the previous section we may assume that every parabolic trajectory is an el-
lipse. Our discussion is relied on available cometary data, so we shall first shortly 
review them. 

The number of observed comets is rapidly growing due to the development of 
space technology. For example the ESA/NASA SOHO spacecraft, 
http://www.nascom.nasa.gov, discovered exactly 1500 comets since 1995, the last 
one on 27. June 2008. About 2300 are catalogued, even if it is believed that there 
are more than 109 of them. As very few comets have periods of 12 years, their tra-
jectories are good illustration for very elongated or nearly parabolic ellipses. Here 
is the short history on recent comet discoveries. 

The Catalog of Cometary Orbits, compiled by Marsden, 1989 edition, lists 
1292 computed orbits from 239 BC to AD 1989; only 91 of them were computed 
using the rare accurate historical datafrom before the 17th century. More than 
1200 are therefore derived from cometary passages during the last three centuries. 
Sets of orbital elements in Marsden's catalog involve only 810 individual comets; 
the remainder represents the repeated returns of periodic comets. Four of these 
comets had been definitely lost, and three more were probably lost, presumably 
because of their decay in the solar heat. Of the 155 short-period comets, 93 have 
been observed at two or more perihelion passages. 

The 16th edition of the Catalogue of Cometary Orbits of Smithsonian Astro-
physical Observatory issued in 2005 contains 3031 sets of orbital elements (in the 
J2000.0 system) for 2991 cometary emersions of 2221 different comets through 
mid-August 2005. There is a special tabulation giving osculating elements for the 
170 numbered periodic comets, excluding seven deemed to be lost. 

According to the list of periodic comets on the Planetary Data System Small 
Bodies Node, NASA, last update on 10 April 2008, 
http://pdssbn.astro.umd.edu/comet\data, there are 420 designated periodic comets. 
According to Seiichi Yoshida's Comet Catalog, www.aerith.net, there are 243 non-
numbered periodic comets (the last discovered C/2008 L3, 13. Jun 2008) and 200 
numbered periodic comets. 
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In next discussion we shall rely on Marsden Catalog of Cometary Orbits.  Of 
the 655 comets of long period contained in the Catalog, 192 have osculating ellip-
tic orbits, and 122 have osculating orbits that are very slightly hyperbolic. Finally, 
341 are listed as having parabolic orbits, but this is rather false because either it 
has not been possible to detect unequivocal deviations from a parabola on the 
usually very short arc along which the comets have been observed or, more simp-
ly, the final calculations have never been made. However, the parabola is always 
assumed first in the preliminary computation. If the osculating orbit is computed 
backward to when the comet was still far beyond the orbit of Neptune and if the 
orbit is then referred to the centre of mass of the solar system, the original orbits 
almost always prove to be elliptic. 

These data exactly validates methods of nonstandard analysis in studying com-
etary trajectories. For example, in the preliminary computation, the value of the 
parameter p is computed. Simply, the second term (3) in the formula (2) may be 
omitted as we may consider it as an infinitesimal. It also shows that the formula 
(2) could be very appropriate in calculation of cometary orbits. 

Let us consider very-long-
period comets and comets hav-
ing orbits not significantly dif-
ferent from a parabola. It is be-
lieved that these comets origi-
nate in the Oort cloud which is 
distant around 100000 AU from 
the Sun.  By our previous dis-
cussion it is appropriate to use 
here methods of nonstandard 
analysis. So let us assume that a 
hypothetical comet C is moving 
along an ellipse E in the non-

standard plane having the second focus at (q,0) where q is an infinite number.  
Therefore, the aphelion of E is at infinity, and by the second Kepler's law the ve-
locity v of the comet near the aphelia (i.e. at the finite distance from aphelia in 
terms of nonstandard analysis) is an infinitesimal. Otherwise, the surface swept by 
the comet for the finite time t would be infinite due to the infinite distance of the 
comet from the Sun, and that would contradict the Second Kepler's law. In reality, 
a simple calculation shows that the velocity v of the comet C near aphelia would 
be around 100 m/sec, negligible small comparing to the velocity at the perihelia. 
Therefore, the momentum p = mv of the comet C is an infinitesimal too; we would 
rather say that the comet C floats in the Oort cloud instead of it travels around the 
Sun. Hence the trajectory of the comet C is subject to any small perturbation, i.e. 
any infinitely small force, or impulse, would change significantly its trajectory. 
Simply saying, parabolic orbits at far distances are very unstable.  This follows 
from the fact that the velocity v needed for transition from an orbit O2 to the 
transfer ellipse which would carry the comet C to the other orbit O1 is an infinite-
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simal. The transfer ellipse will be seen from the near neighborhood of the Sun as a 
parabola with the second focus at infinity. The graph above (A. Chamberlin, 
JPL/Caltech, 2007) illustrates the instability of cometary orbits. The dotted line 
represents the Jupiter Tisserand invariant (T) evaluated at T=3 and zero inclina-
tion. This boundary very roughly separates small-bodies which are dynamically 
bound to Jupiter from those which are not. The region above this curve represents 
objects with T<3 (i.e. bound to Jupiter). Notice that most comets as well as the 
Trojan asteroids appear in that upper region (T<3, bound to Jupiter) while nearly

all asteroids are contained in the region below the curve where T>3 (i.e. not bound 
to Jupiter).  Therefore most of the comets having now elliptical orbits were cap-
tured once in the past by Jupiter, the dominant planet of the Solar system. 

There are other astronomical evidences that support our discussion. Namely, 
according to Delsemme (2008) among the very-long-period comets, there is a par-
ticular class of comets that Oort showed as having never passed through the plane-
tary system before, notwithstanding the fact that their original orbits were elliptic, 
which implies repeated passages. This paradox vanishes when it is understood that 
their perihelia were outside of the planetary system before their first appearance 
but that their orbits have been perturbed near aphelia by interstellar-cloud passages 
or by galactic tides, in such a way that their perihelia were lowered into the plane-
tary system. 

References 

Albeverio, S. et al.: 1986, Non-standard Methods in Stohastic Analysis and Mathematical 
Physics, Academic Press,  New York. 

Anderson R. M.: 1976, A non-standard representation for Brownian motion and Ito inte-
gration, Isr. J. Math, 25, 15-46. 

Andjeli , T. P.: 1983, An introduction to Astrodynamics (in Serbian), Math. Inst, Bel-
grade. 

Baker, R. M. L., Makemson, M. W.: 1961, Astrodynamics, Academic Press, New York. 
Chang, C. C., Keisler, H. J.: 1990, Model Theory, North-Holland,  Amsterdam. 
Delsemme, A. H.: 2008, Comet, Encyclopædia Britannica. Ultimate Reference Suite.  Chi-

cago: Encyclopædia Britannica. 
Mijajlovi , Ž., Miloševi , M., Perovi , A.: 2006, Infinitesimals in Nonstandard Analisys 

versus Infinitesimals in  p-adic Fields, AIP Conf. Proc, 826, New York, 274-279. 
Mijajlovi , Ž., Pejovi , N.: 2007, Non-Archimedean Methods in Cosmology, AIP Conf. 

Proc, 895, New York, 317-320. 
Mijajlovi , Ž., Pejovi , N., Ninkovi , S.: 2007, Nonstandard  Representation of Processes 

in Dynamical Systems, AIP Conf.  Proc, 934, New York, 317-320. 
Robinson, A.: 1961, Non-Standard Analysis, Proc. Roy. Acad. Amsterdam, ser. A, 64,

432-440. 
Stern, I.: 1997, On Fractal Modeling in Astrophysics: The Effect of Lacunarity on the 

Convergence of Algorithms  for Scaling Exponents, ASP Conference Series, 125.
Stroyan, D., Luxemburg, W. A. J.: 1976, Introduction to the theory of infinitesimals, Aca-

demic Press, New York. 


