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 Molecular clouds (MCs) as sites of star formation (SF)

Molecular hydrogen distribution 
correlates well 

with zones of SF in galaxies
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MC ρ Ophiuchi
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Molecular hydrogen distribution 
correlates well 

with zones of SF in galaxies

Tracers of molecular gas

Dust emission
(small-scale structure)

Emission of CO species

CO survey of the Milky Way
(Dame et al. 2001)

Appropriate 
for study of star-forming 

clouds and their 
substructures (e.g., 

pre-/protostellar cores)



 The variety of star-forming activity in molecular clouds (MCs)

High-mass SF clouds 
- giant MCs 
- sizes: up to 100 pc
- masses: 105-106 M⨀ 
- Signatures of high-mass and 

cluster formation, massive, grav. 
unstable filaments of high 
column-density

Low-mass SF clouds 

- sizes: up to 10-30 pc          

- masses: 103-104 M⨀ 
- They form typically low-mass 

stars 

Herschel imaging at high angular resolution (18 arcsec; Schneider et al. 2022)
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- sizes: up to 100 pc
- masses: 105-106 M⨀ 
- Signatures of high-mass and 

cluster formation, massive, grav. 
unstable filaments of high 
column-density

Low-mass SF clouds 

- sizes: up to 10-30 pc          

- masses: 103-104 M⨀ 
- They form typically low-mass 

stars 

Quiescent clouds 
- Poor or no SF activity 

Diffuse clouds 
- Mostly atomic 

Herschel imaging at high angular resolution (18 arcsec; Schneider et al. 2022)



The complex physics of star-forming MCs 

 The complex physics of MCs is governed by gravity, 
supersonic turbulence, magnetic fields and – in the 
general case – an isothermal equation of state 
(EOS).

 Accretion from the surrounding medium and feedback 
from new-born stars and supernovae play an 
essential role in cloud’s evolution.

 Effects of rotation
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 The complex physics of MCs is governed by gravity, 
supersonic turbulence, magnetic fields and – in the 
general case – an isothermal equation of state 
(EOS).

 Accretion from the surrounding medium and feedback 
from new-born stars and supernovae play an 
essential role in cloud’s evolution.

 Effects of rotation

This complex physics is imprinted in:
- General structure of MCs in terms of scaling relations of velocity 

dispersion and mass.
- Probability distribution of different quantities of the medium
- Physical parameters of substructures (clumps, cores, filaments)



(Column-)Density distribution as a research tool

Lognormal (part of) PDF 
→ isothermal supersonic turbulence

Molina et al. (2012)

Kainulainen et al. (2009)

- probability distribution function (PDF) of logdensity

simulations observations



(Column-)Density distribution as a research tool

Lognormal (part of) PDF 
→ isothermal supersonic turbulence

Molina et al. (2012)
Federrath & Klessen (2013)

Emergence of a power-law tail (PLT) 
→ increasing role of self-gravity

Kainulainen et al. (2009) Kainulainen et al. (2009)

- probability distribution function (PDF) of logdensity

simulations observations

simulations

observations



PDF of mass density (ρ-PDF) in evolved star-forming MCs

Kritsuk, Norman & Wagner (2011)

Khullar et al. (2021)

Marinkova et al. (2021)

- HD simulations of supersonic, 
isothermal and self-gravitating 
turbulent medium. 

- Resolution: down to AU scales in 
the dense cores.

- HD simulations of isothermal 
gravoturbulent fluids, varying the 
virial ratio and the Mach number. 

- Resolution: down to ~100 AU.

- HD simulations of  typical large SF clumps (0.5 
pc), with large Jeans content (32, 354 MJ); 
variation of turbulent driving 

- Resolution: down to ~3 AU.



PDF of mass density (ρ-PDF) in evolved star-forming MCs

Kritsuk, Norman & Wagner (2011)

Khullar et al. (2021)

Marinkova et al. (2021)

Emergence of a 
second PLT at very 
 high densities and 
at later evolutionary 

stages

- HD simulations of supersonic, 
isothermal and self-gravitating 
turbulent medium. 

- Resolution: down to AU scales in 
the dense cores.

- HD simulations of isothermal 
gravoturbulent fluids, varying the 
virial ratio and the Mach number. 

- Resolution: down to ~100 AU.

- HD simulations of  typical large SF clumps (0.5 
pc), with large Jeans content (32, 354 MJ); 
variation of turbulent driving 

- Resolution: down to ~3 AU.



 N-PDFs of variety of MCs with various SF activity 

High-mass SF clouds Low-mass SF clouds Quiescent clouds

Herschel imaging at high angular resolution (18 arcsec; Schneider et al. 2022)



 N-PDFs of variety of MCs with various SF activity 

High-mass SF clouds Low-mass SF clouds Quiescent clouds

Herschel imaging at high angular resolution (18 arcsec; Schneider et al. 2022)

Double PLTs confirmed from 
observations!



Some suggested explanations of the second PLT 

 Rotation of prestellar cores (Kritsuk et al. 2011), 
structures in rotationally flattened disks (Murray et al. 2017)

 Amplification of magnetic fields in the densest clumps 
within the cloud (Schneider et al. 2015)

 Change in thermodynamics: transition from isothermal state 
(at larger scales) to polytropic state (at small scales) in 
self-gravitating clouds with steady-state accretion (Donkov et al. 2021) 

 Changing balance between gravity and turbulence in the course of
MC evolution: first PLT signifies  (Murray et al. 2017)

 All those 
factors act 
together?
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 Rotation of prestellar cores (Kritsuk et al. 2011), 
structures in rotationally flattened disks (Murray et al. 2017)

 Amplification of magnetic fields in the densest clumps 
within the cloud (Schneider et al. 2015)

 Change in thermodynamics: transition from isothermal state 
(at larger scales) to polytropic state (at small scales) in 
self-gravitating clouds with steady-state accretion (Donkov et al. 2021) 

 Changing balance between gravity and turbulence in the course of
MC evolution: first PLT signifies  (Murray et al. 2017)

This report: study of ρ-/N-PDF evolution which 
allows to distinguish the effect of rotation on the 

high-density end 

 All those 
factors act 
together?



Used data and applied method

Numerical simulations (Wollenberg et al. 2020)
● Voronoi moving-mesh code AREPO (Springel 2010). 
● Simulated contracting SF clump: single Bonnor-Ebert sphere 

within a homogeneous 13 pc box.
● Primordial gas: a network of 45 chemical reactions between 

different species of H and He and free electrons provides for 
treatment of cooling and for computation of the polytropic index

● Different physical setups
- Pure infall (PI)
- Rotation only (RO), β=0.01 and β=0.10 
- Turbulence only (TO), α=0.05 and α=0.25

● Run times: ~2 τ
ff 
; number of protostars formed: from 1 (PI) up to a 

few dozens

α Turbulent vs. gravitational potential 
energy ratio

β Rotational kinetic vs. gravitational 
potential energy ratio

‘contracting SF clump’ 
BE-sphere: R~2 pc, 2.6x103 M

⨀
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● Voronoi moving-mesh code AREPO (Springel 2010). 
● Simulated contracting SF clump: single Bonnor-Ebert sphere 

within a homogeneous 13 pc box.
● Primordial gas: a network of 45 chemical reactions between 

different species of H and He and free electrons provides for 
treatment of cooling and for computation of the polytropic index

● Different physical setups
- Pure infall (PI)
- Rotation only (RO), β=0.01 and β=0.10 
- Turbulence only (TO), α=0.05 and α=0.25

● Run times: ~2 τ
ff 
; number of protostars formed: from 1 (PI) up to a 

few dozens

α Turbulent vs. gravitational potential 
energy ratio

β Rotational kinetic vs. gravitational 
potential energy ratio

● Averaged PDFs (over varied total number of bins)
● Input parameters: lower cutoff, upper cutoff, range of variation of the 

total number of bins. 
● Output (PLT) parameters: slope, deviation point

Extension of the aBplfit technique (Veltchev et al. 2019)

‘contracting SF clump’ 
BE-sphere: R~2 pc, 2.6x103 M

⨀



Development of multiple PLTs

t = t
SF

t = t
end



Evolution of the PLTs in ρ-PDFs

PI
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PI RO, β=0.01 RO, β=0.10



Evolution of the PLTs in N-PDFs

Donkov, Veltchev & Klessen (2017)

- Relation between the 
exponents of the 
PLTs in ρ– and N-
PDF. 

- Based on the 
assumption for 
spherical symmetry 
and density profile of 
power-law type.



Evolution of the PLTs in N-PDFs

Donkov, Veltchev & Klessen (2017)

- Relation between the 
exponents of the 
PLTs in ρ– and N-
PDF. 

- Based on the 
assumption for 
spherical symmetry 
and density profile of 
power-law type.

(averaged)

Schneider et al. (2022)



Results: evolution of PLTs in SF clouds  

 Similarities between all runs (pure infall and with rotational support)
     - Emergence of PLT 1 at t~t

SF
; it retains its slope (q

1
~-1.3) within many 

free-fall times
     - Emergence (shortly after t~t

SF
) and development of PLT 2 at the high-

density end of the PDF, with a typical value q
2
~-2.0

     - (For the runs with rotational support) Emergence of PLT 3 at the very 
high-density end (i.e. very small spatial scales) whose slope varies 
around a typical value q

3
~-1.0

     - Relation between the PLT 1 slopes in ρ- and N-PDF corresponds to a 
spherically symmetric model with a radial PL density profile. They are in 
general agreement with the recent observations of regions of various SF 
activity (Schneider et al. 2022).

  Differences:
     - No PLT 3 in the pure-infall runs
     - Unstable PLT 2 in the RO runs; it disappears occasionally for β=0.10  

   



Contribution: multiple PLTs in SF clouds/clumps
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Contribution: multiple PLTs in SF clouds/clumps

p(s)

  s
  Spatial scales

~10 AU~a few 100 AU

  Classical Larson-Penston solution (‘inside-out’ collapse)

  ‘Hard polytropic’ EOS 
(this work)

  Free-fall collapse 
of the inner shells

  Bound gas containing disk structures  (Khullar et al. 2021)



Contribution: multiple PLTs in SF clouds/clumps

p(s)

  s
  Spatial scales

~10 AU~a few 100 AU

  Classical Larson-Penston solution (‘inside-out’ collapse)

  ‘Hard polytropic’ EOS 
(this work)

  Free-fall collapse 
of the inner shells

  Rotationally 
flattened disks
  (Kritsuk et al.  

2011, Murray et al. 
2017, this work)

Thermal support + 
gravity +  

‘hard polytropic’ EOS 
(Donkov et al. 2021)

  Bound gas containing disk structures  (Khullar et al. 2021)
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