# POWER-LAW TAILS OF THE DENSITY DISTRIBUTION IN STAR-FORMING CLOUDS: POSSIBLE EFFECTS OF ROTATION AND THERMODYNAMICS

Todor Veltchev<sup>1</sup>, Lyubov Marinkova<sup>2</sup>, Sava Donkov<sup>3</sup> & Orlin Stanchev<sup>1</sup>

- <sup>1</sup> Faculty of Physics, University of Sofia, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
- <sup>2</sup> Department of Applied Physics, Technical University-Sofia, 8 Kliment Ohridski Blvd., Sofia 1000, Bulgaria
- <sup>3</sup> Institute of Astronomy and NAO, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausee Blvd., 1784 Sofia, Bulgaria





XIII<sup>th</sup> Bulgarian-Serbian Astronomical Conference 3-7 October 2022, Velingrad, Bulgaiia





#### **Tracers of molecular gas**

#### **Dust extinction** ('dark clouds')



(image: HST, DSS1; sky.esa.int)







**Dust extinction** 



## The variety of star-forming activity in molecular clouds (MCs)

Herschel imaging at high angular resolution (18 arcsec; Schneider et al. 2022)



#### **High-mass SF clouds**

- giant MCs
- sizes: up to 100 pc
- masses: 10<sup>5</sup>-10<sup>6</sup> M<sub>☉</sub>
- Signatures of high-mass and cluster formation, massive, grav. unstable filaments of high column-density



#### **Low-mass SF clouds**

- sizes: up to 10-30 pc
- masses:  $10^{3}$ - $10^{4}$   $M_{\odot}$
- They form typically low-mass stars

## The variety of star-forming activity in molecular clouds (MCs)

Herschel imaging at high angular resolution (18 arcsec; Schneider et al. 2022)



#### **High-mass SF clouds**

- giant MCs
- sizes: up to 100 pc
- masses: 10<sup>5</sup>-10<sup>6</sup> M<sub>☉</sub>
- Signatures of high-mass and cluster formation, massive, grav. unstable filaments of high column-density



#### **Low-mass SF clouds**

- sizes: up to 10-30 pc
- masses:  $10^{3}$ - $10^{4}$   $M_{\odot}$
- They form typically low-mass stars



#### **Quiescent clouds**

- Poor or no SF activity



#### **Diffuse clouds**

- Mostly atomic

#### The complex physics of star-forming MCs

- The complex physics of MCs is governed by gravity, supersonic turbulence, magnetic fields and — in the general case — an isothermal equation of state (EOS).
- Accretion from the surrounding medium and feedback from new-born stars and supernovae play an essential role in cloud's evolution.
- Effects of rotation

## The complex physics of star-forming MCs

- The complex physics of MCs is governed by gravity, supersonic turbulence, magnetic fields and — in the general case — an isothermal equation of state (EOS).
- Accretion from the surrounding medium and feedback from new-born stars and supernovae play an essential role in cloud's evolution.
- Effects of rotation



#### This complex physics is imprinted in:

- General structure of MCs in terms of scaling relations of velocity dispersion and mass.
- Probability distribution of different quantities of the medium
- Physical parameters of substructures (clumps, cores, filaments)

## (Column-)Density distribution as a research tool

$$s = \log(\rho/\langle \rho \rangle)$$

 $s = \log(\rho/\langle \rho \rangle)$   $p_s ds$  - probability distribution function (PDF) of logdensity

#### Lognormal (part of) PDF

→ isothermal supersonic turbulence

$$p_s ds = \frac{1}{\sqrt{2\pi\sigma_s^2}} \exp\left[-\frac{(s-s_0)^2}{2\sigma_s^2}\right] ds \qquad \sigma_s^2 = \ln\left[1 + b^2 \mathcal{M}^2\right]$$

observations





Kainulainen et al. (2009)

## (Column-)Density distribution as a research tool

e<sup>s</sup> 0.001

10

10-

-5

 $s = \ln(\rho/\rho_0)$ 

$$s = \log(\rho/\langle \rho \rangle)$$

 $p_s ds$  - probability distribution function (PDF) of logdensity

#### Lognormal (part of) PDF

→ isothermal supersonic turbulence

$$p_s ds = \frac{1}{\sqrt{2\pi\sigma_s^2}} \exp\left[-\frac{(s-s_0)^2}{2\sigma_s^2}\right] ds \qquad \sigma_s^2 = \ln\left[1 + b^2 \mathcal{M}^2\right]$$



#### observations



Kainulainen et al. (2009)

## Emergence of a power-law tail (PLT) → increasing role of self-gravity

 $PLT \propto \exp(qs), \quad q < 0$ 



Federrath & Klessen (2013)

## PDF of mass density ( $\rho$ -PDF) in evolved star-forming MCs



- HD simulations of supersonic, isothermal and self-gravitating turbulent medium.
- Resolution: down to AU scales in the dense cores.



- HD simulations of isothermal gravoturbulent fluids, varying the virial ratio and the Mach number.
- Resolution: down to ~100 AU.



- HD simulations of typical large SF clumps (0.5 pc), with large Jeans content (32, 354  $M_{\rm J}$ ); variation of turbulent driving
- Resolution: down to ~3 AU.

## PDF of mass density ( $\rho$ -PDF) in evolved star-forming MCs



- HD simulations of typical large SF clumps (0.5 pc), with large Jeans content (32, 354  $M_{\rm J}$ ); variation of turbulent driving
- Resolution: down to ~3 AU.

## *N*-PDFs of variety of MCs with various SF activity

Herschel imaging at high angular resolution (18 arcsec; Schneider et al. 2022)



## *N*-PDFs of variety of MCs with various SF activity



#### Some suggested explanations of the second PLT

- Rotation of prestellar cores (Kritsuk et al. 2011), structures in rotationally flattened disks (Murray et al. 2017)
- Changing balance between gravity and turbulence in the course of MC evolution: first PLT signifies (Murray et al. 2017)
- Amplification of magnetic fields in the densest clumps within the cloud (Schneider et al. 2015)
- Change in thermodynamics: transition from isothermal state (at larger scales) to polytropic state (at small scales) in self-gravitating clouds with steady-state accretion (Donkov et al. 2021)

All those factors act together?



## Some suggested explanations of the second PLT

- Rotation of prestellar cores (Kritsuk et al. 2011), structures in rotationally flattened disks (Murray et al. 2017)
- Changing balance between gravity and turbulence in the course of MC evolution: first PLT signifies (Murray et al. 2017)
- Amplification of magnetic fields in the densest clumps within the cloud (Schneider et al. 2015)
- Change in thermodynamics: transition from isothermal state
  (at larger scales) to polytropic state (at small scales) in
  self-gravitating clouds with steady-state accretion (Donkov et al. 2021)

All those factors act together?

**This report:** study of  $\rho$ -/N-PDF evolution which allows to distinguish the effect of rotation on the high-density end



#### Used data and applied method

#### **Numerical simulations (Wollenberg et al. 2020)**

- Voronoi moving-mesh code AREPO (Springel 2010).
- Simulated contracting SF clump: single Bonnor-Ebert sphere within a homogeneous 13 pc box.
- Primordial gas: a network of 45 chemical reactions between different species of H and He and free electrons provides for treatment of cooling and for computation of the polytropic index
- Different physical setups
  - Pure infall (PI)
  - Rotation only (RO),  $\beta$ =0.01 and  $\beta$ =0.10
  - Turbulence only (TO),  $\alpha$ =0.05 and  $\alpha$ =0.25
- Run times: ~2  $\tau_{_{\rm ff}}$ ; number of protostars formed: from 1 (PI) up to a few dozens

- $\alpha$  Turbulent vs. gravitational potential energy ratio
- β Rotational kinetic vs. gravitational potential energy ratio



'contracting SF clump' BE-sphere:  $R\sim2$  pc,  $2.6\times10^3$   $M_{\odot}$ 

#### Used data and applied method

#### **Numerical simulations (Wollenberg et al. 2020)**

- Voronoi moving-mesh code AREPO (Springel 2010).
- Simulated contracting SF clump: single Bonnor-Ebert sphere within a homogeneous 13 pc box.
- Primordial gas: a network of 45 chemical reactions between different species of H and He and free electrons provides for treatment of cooling and for computation of the polytropic index
- Different physical setups
  - Pure infall (PI)
  - Rotation only (RO),  $\beta$ =0.01 and  $\beta$ =0.10
  - Turbulence only (TO),  $\alpha$ =0.05 and  $\alpha$ =0.25
- Run times: ~2  $\tau_{_{\rm ff}}$ ; number of protostars formed: from 1 (PI) up to a few dozens

- α Turbulent vs. gravitational potential energy ratio
- β Rotational kinetic vs. gravitational potential energy ratio



'contracting SF clump' BE-sphere:  $R\sim2$  pc,  $2.6\times10^3$   $M_{\odot}$ 

#### Extension of the aBplfit technique (Veltchev et al. 2019)

- Averaged PDFs (over varied total number of bins)
- *Input parameters:* lower cutoff, upper cutoff, range of variation of the total number of bins.
- Output (PLT) parameters: slope, deviation point

## **Development of multiple PLTs**



## Evolution of the PLTs in $\rho$ -PDFs





## Evolution of the PLTs in $\rho$ -PDFs



#### **Evolution of the PLTs in N-PDFs**



#### **Evolution of the PLTs in N-PDFs**



#### Results: evolution of PLTs in SF clouds

- Similarities between all runs (pure infall and with rotational support)
  - Emergence of PLT 1 at  $t \sim t_{\rm SF}$ ; it retains its slope  $(q_1 \sim -1.3)$  within many free-fall times
  - Emergence (shortly after  $t\sim t_{\rm SF}$ ) and development of PLT 2 at the high-density end of the PDF, with a typical value  $q_2\sim -2.0$
  - (For the runs with rotational support) Emergence of PLT 3 at the very high-density end (i.e. very small spatial scales) whose slope varies around a typical value  $q_3$ ~-1.0
  - Relation between the PLT 1 slopes in  $\rho$  and N-PDF corresponds to a spherically symmetric model with a radial PL density profile. They are in general agreement with the recent observations of regions of various SF activity (Schneider et al. 2022).

#### Differences:

- No PLT 3 in the pure-infall runs
- Unstable PLT 2 in the RO runs; it disappears occasionally for  $\beta$ =0.10

## Contribution: multiple PLTs in SF clouds/clumps



## Contribution: multiple PLTs in SF clouds/clumps



## Contribution: multiple PLTs in SF clouds/clumps



#### **Acknowledgements**

- Grant KL 1358/20- 3 of the Deutsche Forschungsgemeinschaft (DFG)
- Additional funding from the Ministry of Education and Science of the Republic of Bulgaria, National RI Roadmap Project DO1-176/29.07.2022