Scattering Line Polarization from Illuminated Disk-like Objects

Ivan Milić

Astronomical Observatory Belgrade Lagrange Laboratory, Universite de Nice Sophia Antipolis, France and

Marianne Faurobert

Lagrange Laboratory, Universite de Nice Sophia Antipolis, France

9th SCSLSA, Banja Koviljača, 16 May 2013

Transfer of radiation through various disks

- **AGNs** (usually MC approaches)
- Other accretion disks (self-emitting gas, e.g. Papkalla 1995, Elitzur et al. 2012)
- **Circumstellar disks** (scattering gas, e.g. Poeckert & Marlborough 1978, Halonen et al. 2013)
- Solar prominences and loops (also scattering gas, but different illumination, see series of papers by Gouttebroze, 2005+)
- Polarization computed rarely, mostly in continuum (although see Poeckert & Marlborough 1978, for a detailed treatment of Hydrogen Balmer series)
- In detailed computations, to fully account for NLTE radiative transfer effects, 3D Cartesian grids are used
- Idea of this work: Exploit the axial symmetry and use 2D cylindrical coordinates

2D Cylindrical Geometry

- Short Characteristics method (state-of-the-art formal solution method in "analytical" radiative transfer) is very awkward to set-up in curved geometries
- Causality problems, curved characteristics (see van Noort et al. 2002)
- However, if geometry can be exploited a factor of 100 in Grid size can be saved (Milić 2013)
- Not so ideal as it seems: angular interpolation, dynamic intensity allocation/deallocation problems, both especially hurt line polarization computations!

Computing NLTE Scattering Line Polarization

- Consequence of the anisotropy of the radiation field
- Further affected by: i) ellastic collisions; ii) magnetic fields (Hanle effect)
- In a two-level atom, with no ground level polarization, all three Stokes parameters (I, Q, U) share same optical depth scale
- Two approaches: density matrix formalism (Landi Degl'Innocenti & Landolfi, 2004) and scattering matrix formalism (Bommier 1997, Anusha et. al. 2011+)
- Scattering matrix formalism in reduced intensity basis preserves straightforward approach from scalar case and avoids dependence of the source function on angle.

$$\frac{d\hat{I}^r(r,z,\theta\,\varphi,x)}{d\tau} = \phi(\nu)(\hat{I}^r(r,z,\theta,\varphi,x) - \hat{S}^r(r,z))$$

$$\begin{split} \hat{J}^r = & \frac{1}{4\pi} \int_{-\infty}^{\infty} \phi(x) dx \int_{0}^{2\pi} \int_{0}^{\pi} \hat{\Psi}^r(\theta', \theta, \varphi', \varphi) \\ & \times \hat{I}^r(\theta', \varphi', x) \sin \theta d\theta d\varphi. \end{split}$$

Results for the test cases

- The method successfully reproduces the well-known results from 1D cases. Here we mimic the 1D atmosphere with a very large cylinder.
- "Edge" effects are quite prominent!

Results for the test cases

- The method successfully reproduces the well-known results from 1D cases. Here we mimic the 1D atmosphere with a very large cylinder.
- "Edge" effects are quite prominent!

Results for the test cases

- The method successfully reproduces the well-known results from 1D cases. Here we mimic the 1D atmosphere with a very large cylinder.
- "Edge" effects are quite prominent!

A simple circumstellar disk example:

Discussion

- Presence of the disk influences polarization levels a lot!
- Our 2D approach reproduces other known results well and offers a significant time saving compared to 3D approaches
- Drawbacks:
 - i) Axial symmetry

ii) Restrictive geometry of the magnetic field \rightarrow bad for prominences

iii) Hard to deallocate unneeded intensity

iv) Angular interpolation slows down computation a bit

- However, there are also lots of advantages!
- Future implementation: Co-moving frame approach in order to handle large velocities found in accretion disks