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Shape modelling

e The choice of the best-suited statistical
distribution for data modelling is not a trivial issue;

e Unless a sound theoretical background exists for
selecting a particular distribution, one will usually
try to test various candidates and select a
distribution based on its fit to the observed data;

e It is more efficient to define a sufhiciently general
family that can be used for this purpose.



Pearson system -
oreat diversity of shapes:

e unimodal, bimodal, U-shaped, J-shaped and

monotone probability distribution functions,

o ..which may be symmetric and asymmetric,
concave and convex,

e ...with smooth, abrupt, truncated, long,
medium or short tails.



Pearson system”

e First derivative of probability density function:

1 df(x) a+x
f(z) dz o+ 1z + cox?
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Using only 2 parameters: Squared Asymmetry (5,) and Excess (3.),
calculated from observations, Type of Pearson distribution can be
retrieved.

") Pearson, K.: 1895, Contributions to the Mathematical Theory of Evolution. I1. Skew Variation in.
Homogeneous Materzal. Philosophical Transactions of the Royal Society of London, 186, 343 — 414



Method of moments
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Classification
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Beta plane (5,, (3.)
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Method of Maximum lLikelihood

e The idea”: to find the parameters of
probability density function that give the
highest probability (maximum likelihood) of

the occurrence of the measured data.

“Sir Ronald Aylmer Fisher (1890-1962) for the first time presented the idea in 1912 (when he was 22 years old) in
the article: On an absolute criterion for fitting frequency curves, Messenger of Mathematics (1912), 41, 155-160.



Method of Maximum Likelihood

* Probability: e Likelihood:
Knowing parameters Observation of data
— Prediction of outcome — Estimation of parameters
f(x|0) = L(0x)
probability density f-on likelihood function
i A
X = (xlax27"'7$n)T 0 — ((Q}CO,QC:[,CQ)Tk)



Likelihood function

L(0|x) = f(x(0) = | | fi(xil6)
1=1

applying logarithm, one obtain:

L(0|x) = In L(0|x) = Zln fi(z:]0)



Looking for 6

e Looking for 0™ which maximizes likelihood

L(0F = max L(6 = ma In f;(x;|0
(6% [x) i (6]x) mOX;::l fi(2:]@)

e It is not possible to solve this task analytically;
thus, we apply numerical methods of optimization.



Numerical optimization

e Methods, e.g.:
o Nelder - Mead 1 D example

e Levenberg - Marquardt

e It is important to choose GOOD . 3
starting values for the parameters R }
They can be calculated from Y

observations using method of 1. ¢ - = o | '
moments! T —— '




Observations, dynamical spectrum
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A theoretical prediction

e Stochastic Growth Theory (SGT)”
G = 2log (—gg)

N
logE =logEo+» Gi N >1
i=1

Central limit theorem of statistics says: if the process of energy
exchange (log E) has a random character and the number of
these exchanges is large enough, then the probability density
distribution of the electric field measurements is NORMAL.

) Robinson, P. A. : Stochastic-Growth Theory of Langmuir growth-rate fluctuations in type 111 solar
radio sources, 1993, Solar Physics, 146, 357



Shape modelling
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36 LW events in Beta plane (5,, 5.)
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Resume

o LW distribution seems to be more Pearson type than
normal - in contradiction with SGT!

e REOPENED QUESTIONS:
e What is distributions of Langmuir waves energy?

e Which plasma processes lead to the observed LW
energy distribution?



