Microlensing based studies of the unresolved structure of AGN and the composition of lens galaxies

Teresa Mediavilla Gradolph Evencio Mediavilla Gradolph

Index

- Introduction to gravitational lensing and microlensing.
- Statistical analysis of caustics concentration based on caustics crossings counts. Application to QSO 2237+0305
- Results and future work.

Introduction to gravitational lensing and microlensing

STS 1 in Desert Mirage, Edwards AFB $\sim 1981\,$

Copyright © 2003 by Ctein

Terrestrial mirage

Light deflection by the Sun –1919 eclipse

Gravitational mirage

First discovered gravitational lens

(QSO 0957+561)

QSO 2237+0305

Microlensing

One Source several images Magnification

Pixels-magnification map

$$\mu_{S} = \sum_{\eta_{1},\eta_{2}} I_{S}(\eta_{1},\eta_{2}) \mu_{P}(\eta_{1},\eta_{2})$$

MACHO experiment

Magnification map and light curve associated to point-like lens

MACHO experiment

Magnification map and light curve associated to binary lens

MACHO experiment

QSO 2237+0305

Magnification map and light curve associated to QSO 2237+0305

Experimental curves of light for the four images of Einstein's Cross

Comparison with light curve of a microlensing event in the Milky Way

Map and profiles with different sizes

Simulation and statistical analysis

- Comparison between observed and simulated microlensed effect allows to study:
 - Source
 - Size at different wavelengths.
 - Quasar luminosity profile
 - Lens galaxy
 - Mass distribution
 - Microlenses
 - Abundance
 - Mass
 - Lens system
 - Transversal velocity
- Determination of these parameters can be only statistically done.

Simulation and statistical analysis

- Comparison between observed and simulated microlensed effect allows us to study:
 - Source
 - Size at different wavelengths.
 - Quasar luminosity profile
 - Lens galaxy
 - Mass distribution
 - Microlenses
 - Abundance
 - Mass
 - Lens system

Transversal velocity

Determination of these parameters can be only statistically done.

Transversal velocity

- We need to know transversal velocity of quasar to define observing window in suitable Einstein radii units.
- > Dificult to meassure.
- In many experimental studies estimates of parameters depend on it.
- The number of caustic crossings depends on quasar's velocity moving over magnification map.

Statistical study problems

Experimental errors and intrinsical variability can affect data and results

Objectives

- Simplify the problem reducing microlensing to a series of discrete events, the caustic crossings. If the source size is small enough:
 - They appear well separated
 - They are of high magnification
 - They are difficult to mistake with other variability features

Statistical analysis of caustics concentration based on caustics crossings counts. Application to QSO 2237+0305

Analysis steps

- Simulate magnification maps for different densities of matter, different mass distribution and shear.
- Identify caustic curves
- Count the number of caustics detected in a onedimensional window of certain size in pixels for each axis
- Estimate probability of detecting a caustic in a pixel for each axis
- Compare experimental distributions obtained in simulations with theoretical binomial distribution.
- Minimize $\gamma^2 = \sum \frac{(F_i^{\text{obs}} F_i^{\text{sim}})^2}{(F_i^{\text{obs}} F_i^{\text{sim}})^2}$ to obtain <M> and tv.

Application to QSO 2237+0305

Magnification Maps

1 solar mass microlenses

Microlenses distributed in a range of masses

AYB

C

D

Caustics

1 solar mass microlenses

Microlenses distributed in a range of masses

Magnification map of image D hypothesis A

Effects of source size on magnification map

Caustics can only be isolated in X-ray emission

Caustics

1 solar mass microlenses

Microlenses distributed in a range of masses

Comparison with the binomial distribution (D image)

Unimodal distribution	Peak	Centroid
400 pixels X axis	1	_1
200 pixels X axis	0	0
400 pixels Y axis	0	2
200 pixels Y axis	0	0

Masses in a range	Peak	Centroid
400 pixels X axis	6	7
200 pixels X axis	3	3
400 pixels Y axis	9	10
200 pixels Y axis	3	4

Results and future work

Results (I)

DIMAGE

X AXIS		
n=7, error=±3	n=1, error=±1	
$P(7\pm 3/A)=0.63$	P(1±1/A)=0.049	
$P(7^{\pm}3/B)=0.22$	P(1±1/B)=0.66	
P(A/7)=0.75	P(A/1)=0.07	
P(B/7)=0.25	P(B/1)=0.93	

Y AXIS		
n=10, error=±3	n=2, error=±1	
P(10 ±3/A)=0.37	P(2±1/A)=0.12	
$P(10 \pm 3/B) = 0.12$	P(2 [±] 1/B)=0.38	
P(A/10)=0.76	P(A/2)=0.24	
P(B/10)=0.24	P(B/2)=0.76	

We can distinguish between A and B hypothesis

Results (II)

Can we solve the size / transversal velocity degeneracy?

Results (II)

Results (II)

D image microlenses distributed in a range of masses

Number of caustics (X axis) > 6 ---> Window > 1.2 Einstein radii

Number of caustics (X axis) < 3 — Window < 1.2 Einstein radii

Number of caustics (Y axis) > 9 — Window > 1.2 Einstein radii

Number of caustics (Y axis) < 3 — Window < 1.2 Einstein radii

X-ray light curve of the four images of Q2237

Zimmer, F., Schmidt, R. W. and Wambsganss, J. (2010).

Comparison with theoretical results

0 caustics crossings in a year

Either of the two cases of distribution of mass in stars

We need to observe during ten years to obtain definitive results

Future work

- Simulate distributions of stars characterized by their average mass, <M>, and determine probability distribution functions for each <M>.
- Define a Chi² function to apply a test to the probability distribution:

$$\chi^2 = \sum_{i} \frac{(F_i^{\text{obs}} - F_i^{\text{sim}})^2}{F_i^{\text{sim}}}$$

- Obtain an estimate of <M> minimizing this function with respect to <M>.
- Obtain an estimate of transversal velocity minimizing this function with respect to transversal velocity.