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1. INTRODUCTION

In accordance with plasma line broadening theory, the shapes of isolated spectral
lines of the heavy neutral emitters, in plasmas of medium and high densities are
predominately the result of collisions with the plasma electrons. These electron impacts
cause a symmetric profile ol Lorentzian shape. Griem et al. (1962) developed a semi-
classical theory for the shapes of non-hydrogen lines emitted from plasmas and broadened
by the local electric fields of both electrons as well as ions. First applied to neutral helium,
Griem (1962) subsequently extended theory to heavier elements. The eftects on spectral line
shape due to collisions of electrons with the radiating atoms were treated by an impact
approximation, while influences of local electric fields generaled by the plasma ions were
assigned to asymmetries near the center of isolated spectral lines. Such asymmetries can be
caused by the microtield-induced quadratic Stark shitts of the energy levels of the radiating
atoms. Under usually encountered experimental conditions, where ion motion can be
neglected for heavy element lines, local electric field due 10 plasma ions is treated by a
quasi-static approximation. Griem (1974) developed criterium, considering plasma
conditions, when time-dependent ion-fields should be used and when ion motion becomes
significant. Performing numerical calculations, Griem (1974) showed that electron impact
broadening is the dominant contributor to the broadening for neutral atoms, while ion
broadening contributes mostly about 10% of the total line width. This is the case of medium
density plasma conditions, which are realized in stabilized arcs. The ion contributions for
the line shifts are somewhat greater, and the shifts both due to electron impact and ion
broadening are ‘red’ shifts for the majority of lines. Upper levels of radiating atoms (and to
a much smaller extent, the lower levels) are exposed to relatively small shifting
(proportional to the square of the clectric microfield strength) under the influence of the
local fields from environmental ions. Such shilts, when smeared out by the electric
microtield distribution (Baranger and Mozer, 1959; Mozer and Baranger, 1960; Hooper Jr.,
1966; Hooper Ir., 1968a), cause the electron-broadened symmetric Lorentzian line shape to
become slightly asymmetric and broader as well as shitted beyond position due to electron
broadening. Appearance of asymmetry in spectral line profile provides the possibility for
experimental separation of the quasi-static ion broadening contribution from the electron-
impact broadening. The numerous experiments were devoted to assembling of width and
shift data (FFuhr et al., 1972; Fuhr and Lesage, 1993; Konjevié and Roberts, 1976; Konjevic
et al., 1984). However, very small and thus hardly noticeable asymmetries in the line profiles
have been mostly ignored until investigations of Roder and Stampa (1964) on several
helium lines. They utilized the difference in the intensity decays of the blue and the red
wings of the lines, which was theoretically predicted by Griem et al. (1962). Namely, the
asymptotic intensity distributions in the line wings of the quasi-static j, g(x) profile are
(Griem et al., 1962; Griem, 1974; Woltz, 1986):
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Here j, g(x) denotes the profile of an isolated spectral line emitted by a non-hydrogen
radiator in the quasi-static ion approximation; A (& in ref. Griem, 1974) denotes ion
broadening parameter as a measure of the relative significance of ion 1o electron
broadening. Parameter R is the ratio of the mean ion separation to the Debye length:
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where k is the Boltzmann constant and T, is the plasma electron temperature. The scaled
frequency (wavelength) x is given by
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with angular frequency © and wavelength X; ®, is the unperturbed frequency
(wavelength A, ) of the line, while d, and w are electron impact shift and halt-halfwidth
respectively. The argument B in relation (1) denotes the field strength / in units of the
normal field strength F,, while W,(B) is the ion microfield distribution function (Baranger
and Mozer, 1959; Mozer and Baranger, 1960; Hooper Jr., 1966; Hooper Jr., 19684). Roder
and Stampa (1974), measured for some neutral helium lines, the ratios Q = j, g (X)/ j, z(-X)

for several wavelength distances +x from the line center (d, and w, may be obtained
trom the tables of Griem, 1974) , and calculated a mean value for parameter A according to

A=(Q-1) a7, 4)
3

Kelleher (1981) has used much improved instrumentation to investigate most of these and
several others He I lines. With the same approach good agreement with earlier experimental
results and theory was obtained. Brandt et al. (1981) also performed a similar investigation
of differences in the two line wings for a neutral krypton lines, and Nubbemeyer (1980) for
vacuum ultraviolet lines ol neutral nitrogen. Utilizing the general theoretical line profiles
calculated and tabulated by Griem (1974), Goly and Grabowski (1976) perfonmed best fit
procedures on the shape of several neutral carbon lines. For known plasma conditions,
parameter R (Eq. 2) is also known, so using tabulated electron shifts «, and half-halfwidths
we (Griem, 1974) it was possible to adjust value of ion broadening parameter A by iterative
interpolation of tabulated quasi-static j 4 g(x) profiles (Griem, 1974). Goly and Grabowski
(1976) thus derived, for the first time by least-square procedure, values only for ion
broadening parameter A.

In Refls. ( Jones and Wiese, 1984; Jones et al., 1986; Jones and Wiese, 1987; Badie
and Bacri, 1991), Lorentzian profiles were fitted to the experimental and theoretical j, g(x)
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profiles. A functional relationship between the maximum of the Lorentzian - ;4 p(x)

deviation curve and parameter A was established. This function then was used lor determi-
nation of values for A from the maximum deviations between the experimental points and
the fitted Lotentzian. Such deviation method uses experimental points near the maximum
deviation between the experimental profile and the fitted Lorentzian, and further more
requires interpolation to determine the peak of the deviation curve; this interpolation
procedure can be an additional source of error. Using an alternate approach, Hahn and
Woltz (1990) developed a computer code, which fits the experimental profile with an
asymmetric theoretical j, g(x) profile by varying the width, shift, ion broadening
parameter, and the cubic background of the theoretical curve. Namely, theoretical profiles
Jar(x) of known A were fitted to the experimental profiles of some neutral argon and
carbon lines. Theoretical profiles j, g(x) were generated for three initial guesses for A (A,,
A, and A,) and for a known R, determined from the plasma density and temperature. Then
the parameters d, and w, (Eq.3) are varied to minimize the sum of squared deviations y?
(x2,%x5 and x3) between the experimental and theoretical profiles for each A ;. The fitling
was done within one half width at half maximum (HWHM) of the line center where the
experimental data are most reliable due to large signal-to-noise ratio, and where other
sources of wing asymmeltries are minimal. A cubic polynomial background is fitted to the
experimental points beyond one HWHM from line center. It was found that the value of A is
relatively insensitive to this background as well as to the value of parameter R. The next
guess for A was taken as the minimum point of a parabola litted through the three points

(A, ,%x%). The worst A; (whose xiz is the largest) is discarded and procedure was repeated

until the function %?(A) was minimized within a given tolerance. Hahn and Woltz (1990)
concluded that the quasi-static ion approximation and quadratic level shifts due to the ion
microfield give a good theoretical description of the asymmetries of the spectral line profiles
studied in their work, and that a proposed least-square fitting technique can be of use in
determining the experimental ion broadening parameter A. Neglecting a distinctions among
above mentioned techniques of various authors, one common characteristic could be
emphasized: experimental methods and instrumentation were used to provide such the
plasma conditions necessary for validity of quasi-static approximation for ions and
domination of the Stark effect in broadening of spectral lines. The other broadening
mechanisms (natural, resonance, Van der Waals, Doppler and apparatus) were either
neglected or later on taken into account by the simple corrections. When the Gaussian
portion (corresponding to Doppler and apparatus broadening) of the experimental profile is
of the same order or greater than the Lorentzian part (arising from Stark broadening with
negligible asymmetry due to ions), Voigt profiles of general type (Goly and Weniger, 1986;
Bakshi and Kearney, 1989; Davies and Vaughan, 1963) can be used as model functions.
When the influence ol the ion broadening on the line shape can not be neglected, the
important Gaussian portion have to be taken into account by folding the profile Jar(¥)
after Griem (1974) with Gaussian profile (Goly and Weniger, 1986; Mijatovi¢ et al.,1993;
Knauer and Kock, 1996; Nikolic, 1998: Schinkoth et al.. 1998):

+oc

K(x)= J'G(.\'—s)-jA'R(s)ds. (5)

-C
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It is assumed that all others broadening mechanisms are negligible; on the contrary, their
resulting profiles should be also taken account by folding them with the convolution K(x)
( Knauer and Kock, 1996).

This paper deals with the convenience of using the model (5) with the purpose to
evaluate the Stark parameters directly from the experimental profiles of isolated or
overlapped spectral lines ol neutral atoms. In that manner, a method used by Nikoli¢ (1998)
will be presented through the short discussion of the nonlinear fitting of synthetic and of
some experimental profiles.

2. NON-LINEAR REGRESSION AS A MODELING TOOL

Common modeling application in scientific research is that of predicting an outcome
on the basis of experience. This statistical method, known as regression analysis, requires
that functional relationship between the dependent Y and independent X variables be
specified. In the past, regression analysis has been largely limited to linear models. Such
models can be solved by hand with a single matrix inversion, although they are more easily
solved using a computer. Certain other models can be made linear by parameter trans-
formation in order to utilize linear regression techniques. Such transformations can
introduce unwanted and sometimes unsuspected limitations or assumptions into the model
and must be used with care. The majority of models encountered in spectral line shapes
research, however, are nonlinear (related to parameters of the model) and cannot be
transformed into linear form. Certain requirement exists for a general-purpose non-linear
regression technique, which is both sufficiently general and robust to be applicable to a wide
variely of research interests.

Most of today’s software [or non-linear regression is based on an algorithm by
Marquardt (1963), which uses a Taylor’s series expansion to give successive improvements
to an initial set of parameter estimates. The method is actually a compromise between the
inverse Hessian matrix method (Press et al.,, 1995) and the method of steepest descent
(gradient method). It combines the best features of both methods while avoiding theirs most
serious limitations (Draper and Smith, 1966). It shares with the gradient methods their
ability to converge from an initial guess which may be outside the region of convergence ol
other methods (Press et al., 1995) and with the inverse Hessian matrix methods their ability
to rapidly converge once in the vicinity of the minimum. An attenuation parameter () is
used to switch smoothly between the two methods when is needed. Making & large favors
the gradient method, and cxpands the region of convergence. Making & small selects the
inverse Hessian matrix method and favors rapid convergence. Although no single method
can be considered as the best one for all non-linear problems, Marquardt’s method is a
sensible first choice, providing the reasonable initial parameter estimates.

The goal of nonlinear regression is to fit a model to experimental data. More
precisely, the goal is to minimize the sum of the squares of the vertical distances of the
points (e.g. x2- function) from the model curve (MC). A model is a formal presentation of a
scientific idea. To be useful for nonlinear regression, the model must be expressed as an
cquation that defines Y, the outcome which one measures, as a function of X and one or
more paramelers p that one wants to fit. Choosing a model is a scientific decision and has
to be based on understanding of scientilic problem and should not be based solely on the
shape of the graph. The key assumption is that the data really do follow a specified MC, and



Quasi-Static Stark Profiles as a Model of the Spectral Line ... 189

that all scatters are attributable to random variation. For least-square regression to be valid,
it has to be assumed that this variation (approximaltely) follows a Gaussian distribution, and
that the standard deviation of the scattering is the same for all parts of the MC. In other
words, the degree of scattering is completely unrelated to X. Except for a few special cases.
it is not possible to directly solve the x%- function minimum set of equations to find the
values P, of the model parameters which minimize the x®- function. Instead, nonlinear
regression requires an iterative approach. Here are the steps that every nonlinear regression
procedure follows:

1. Starting with an initially estimated value for cach parameter p =(p,.p,, ... py) in the
model curve: ¥ =Y(X; py,py py) -
2. Generating the MC determined by the initial values; after that, calculation of the value
Y -Y(X;: P)°
G2

i

, where (X,,Y;) is the set of N

of %2- function defined as, ¥*( j) :i( 1Y
i=t
experimental points and o, is set of their measurement errors (standard deviations).

3. Adjusting the parameters p to make the MC come closer lo the data points. There are
several algorithms for adjusting parameters. Levenberg and Marquardt (Press et al.,
1995) derived the most commonly used method discussed in the next section.

4. Adjusting the parameters again so that MC comes even closer to the points.

5. Proceeding with step 4 until the adjustment makes virtually no difference in the value of
2 - function.

6. Reporting the best - fit resulis. The obtained precise values will depend partially on the
initial values chosen in step 1, and the stopping criteria of step 5. This means that
repeated analyses of the same data will not always give exactly the same results.

If obtained data are ‘clean’ that clearly deline a curve, then it is usually doesn’t
matter if the initial values are fairly far from the ‘correct’” values. One will get the same
answer no matter what initial values uses, unless the initial values are far from ‘correct’.
Initial values matter more when experimental data have a lot of scatter, don’t span a large
cnough range of X values to define a full curve, or don’t really fit the model. In these cases.
one may get different answers depending on which initial values were used. This problem
(called finding a local mininuan) is intrinsic to nonlinear regression, no matter what
procedure is used. Fitting procedure will rarely encounter a local minimum if’ data have litile
scatter or were collected over an appropriate range of X values, and an appropriate model
equation is chosen . To test for the presence of a false minimum it is necessary to:

e Note the values of the parameters p and the x? - function from the first fit

e Make a large change to the initial values of one or more parameters p and
run the fit again

e Repeat preliminar step several times

e Ideully, procedure will report nearly the same values of %2- function and same
parameters p regardless of the initial values. If the values are different, the one with

the lowest value of 2 - function should be accepted.
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3. LEVENBERG - MARQUARDT METHOD

Sufficiently near to the minimum, it is reasonable to expect that the - function can
be approximated by a quadratic form due to Taylor’s series expansion (Press et al., 1995):

o 2, a2 2, |
- - ox"(p) - = PO L . - = :
XA(B) M (Ba)+ 2| (BB (PP = (BB (6)
p 13- Op p_
2, = ~2, 2, =
where g EM is an M-vector and H E%_(gp) is an M x M (Hessian) matrix. If the
ap ) p

approximation (6) is a good one, only one step divides the current trial parameters p from
minimizing ones p,:

p.=p+H g . (7)

Approximation (6) may be unfavorable for the shapes of the - function at j, so step
down the gradient is necessary like in the steepest descent method:

Prey = D Hconst.- g , (8)

where the const. has to small enough not to loose the direction down the x2- function
surface. Muking the use of Egs. (7, 8) one has to compute g (the gradient of the -
function at any set of model parameters p), and also the matrix H which is the second
derivative matrix of the %2 - function at any 5. To do so, one has 1o specify the model curve
Y =Y(X;p) and the ¥*(p) merit function. The gradient of ¥2(p) with respect to the
parameters p has the components:

=ng:_2§ (Y, -Y(X;;p)) AY(X;;p)

e 3
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while afler taking additional derivatives, Hessian matrix has the components:
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It is common in practice to introduce new components of gradient and Hessian:
R 1
Bo=--lel, and o =—[H], (11)

so that Eq.(7) can be rewritten in terms of the increments 8p = j, — p as the set of linear
equations:
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After solving the set (12) for the increments 6p . adding them to the current approximation

for parameters p it is possible to get the next approximation ( p,,, = p+90p ). Equation (8).

next

the steepest descent formula, translates to:

Op,=const.-B, q=1,2 .M. (13)

Curvature matrix o] has the components dependant both on the first and on the second
derivatives of the model curve with respect to the model parameters (Eq. (10)). The second
derivative term can be dismissed when it is zero (model curve depends linearly on
parameters p) or small enough comparing to the first derivative term. An additional
possibility arises in practice, when the term (Y, - Y,(X;:p)). multiplying the second
derivative in Eq. (10), is sufficiently small for a successful model because this term should
be the random measurement error of each point. This error can have both signs, and in
general should be uncorrelated with the model, so that the second derivative terms tend to
cancel out each other when summed over /. Following the definition of curvature matrix
components, next relation will be used instead Eq. (11):

Y (X;;p) oY(X;;p)
ap

N
= Y — § = 1, 2o My (14)
[ =1

o; Pq

S

From the fact that the x?- function is nondimensional, the constants of proportionality
between &p, ‘s and B, °s in Eq. (13) therefore must have dimensions of ps since B, havce
dimension of p;‘. According to definition (14) for the components of [a], only the

reciprocals of the diagonal elements 1/o,, have the dimensions of pq2 . Levenberg-
Marquardt method is based on the two facts. First is that the const. in Eq. (13) should be

replaced with , where the attenuation nondimensional parameter £ serves to cut down

i'aqq

the step (setting & >> 1), and the second one is that egs. (12,13) can be built into only one set
of linear equation for increments dp :

M

Z q'OPq = §=14 .. M, (15)

where the new curvature mamx [ ] is defined by the following prescription:

a'qu(1+é'6sq)'asq s, 9=12, .. M, (16)
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where 8, is the Kronecker’s symbol. When £ is very large, the matrix[a'] is forced to be
diagonally dominant and (16) tends to (13); on the other hand, as & approaches zero, Eq.
(16) goes over to (12).
With the given initial guess for the set of model parameters p. Marquardt (1963)
recommended an effective algorithm:
s Compute x%(p).
e Set amodest value for € , commonly £ = 0.001.
e (%) Solve the set of the linear equations (15) for the increments &p and
evaluate y*(p+6p)
o If y®(p+8p)=x2(p). increase & by a factor of 10 and go to (+*)
o If y*(p+8p) <x%(p), decrease & by a factor of 10, set the new trial solution
p« p+08p,and goto (*)
e Condition of stopping is determined with first or second occasion that x* decreases
by a negligible amount (say fractional amount like 107%)
e When acceptable minimum has been found, set £ =0 in order to compute estimated
covariance matrix [C]=[a]™ of standard errors in the fitted parameters p (Press el
al., 1993).

4. EVALUATION OF STARK PARAMETERS

According to Section 1 of this work and under conditions mentioned therein. it is
reasonably to assume that isolated spectral lines of neutral emitters could be modeled by Eq.
(5). This model has to be accommodated to real experimental situations. Experimental
profiles are mostly represented as some relationship between signals from detector and
wavelength of observed radiation. So. transition from the scaled wavelengths x to real
wavelengths A is needed. Amplitudes of signals from detector are usually normalized to
maximal detected value, but almost never to the area under the experimental profile. That’s
why a normalized constant C, has to be introduced. The Gaussian part of the convolution
(5) decays fast on the wings. and practically tends to zero at distances of the several
halfwidths from the center of the Gaussian profile. This fact justily the reduction of
integration limits in (5) from X €(0,20) to Ae (X, - AN, Ay +AX), where A} denotes the
center of the line and AX has to be chosen in such manner to optimize accuracy of
numerical integration against the computing time. The electric microfield distribution
function W, (B) is tabulated for neutral point and charged point cases in Rels. (Hooper Jr.,
1966; Hooper Jr., 1968¢) and for the values Be(0,10). For $>10 distribution function
We(B) is practically zero, so integration limits B €(0,e)in Eq. (1) can be replaced with
limits B  [0,10] unless the more accurate computations have to be performed (Hoper Jr..
19685). With the two-dimensional interpolation of mentioned tables for W,(B). it is
possible to compute values of j, p(A) profile for given values of the parameters A and R.
Since the spectral line always has underlying continuum, it is necessary o add in Eq. (5)
unknown function cont(A), which represents continuum dependence on the wavelength.
According to many laboratory experimental results, the isolated spectral lines of the neutral
emitters are relatively narrow (the total halfwidths for the medium plasma conditions are
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below 0.5 nm) and in the case of the Ar I lines (Nikolié, 1998) the observations were made
inside of approximately eight haltwidths around the line center. In such spectral intervals it
is justified to consider the continuum as independent or weakly linearly dependent function
of the wavelength. Extensive simulations (Nikoli¢, 1998; Nikoli¢ et al., 1998) have shown
that, the preliminary subtraction of the fitted underlying continuum from the experimental
profiles, do influence the adjusted values for the fitted stark parameters p = (w,,d,, A) but
always under 2%. On the other hand. such preliminary subtraction of the continuum reduces
the number of the model parameters, and therefore the time needed for the overall fitting.
Taking into account all the facts mentioned above, the convolution model (S) adapted for
the real situations has the form:
2z ¢,

32 .
T Wg W,

K\ W00 (M), (17)

where overbar denotes continuum reduction. Here wq means the halfwidth ol the Gaussian

Wg = 1[\;'[2) + H‘|2 . (18)

with Doppler wq and apparatus v, broadening elfects included. Concise notation has been
introduced for the convolution integral (17):

portion of the convolution (17):

2+ = 4[”2()..'—),)2 10

we(M)= [ dV(X)P.e [ dB (B)e -
0
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where A, Is the wavelength corresponding to the center of the observed line emitted from

the referent low pressure source ( as Geissler tube, for example) . The gradient components
ol the model function (17) are:
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where y=A*?. The last gradient component (24) could be eliminated from fitting
procedure due to the fact that the Gaussian halfwidth can be experimentally determined
(Nikoli¢, 1998). To summarize, implementing Levenberg-Marquardt algorithm for x?2-
function minimization, it is possible to adjust fitting parameters (w,,d,,y,C, wg)in such
manner that convolution (17) properly describes experimental profiles of the neutral non-
hydrogen emitters. Furthermore, in the case of two overlapping spectral lines similar
procedurc gives satisfactory results, but the fitting time is much longer, since one has the
cight parameters to adjust (w,,,dey, Yy, CoiWeanr ez, ¥5.Crp ). The model function in that
case has the form:

= 2Vin2 C, 2vyin2 C, A
Bl — —— =2 LA e —— = L (R) (25)
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and the gradient components have the same form as egs. (20-24) with the parameters
corresponding to the overlapped lines. In the next section will be briefly presented several
steps of the isolated synthetic spectral line profile fitting by the program code written in
Mathematica 3.0 ( Wolfram, 1996) and given in Appendix 1 of ref. Nikoli¢ (1998).

5. SIMULATIONS

[For the testing purposes of given fitting procedure, discussed in the previous
section, first step is to generate synthetic convolution profile defined by Eq. (17). The exact
values of parameters, which are fixed during the fitting, were: AX =0.5nm, wg = 0.021nm
and R =045, while artificial values for adjustable parameters were w, =0.025nm,
dg =0.020nm, y=0.15 and C,=05arb.u.-nm. With these values an synthetic
convolution (17) was generated in N =100 equally spaced points with the step of
0.005 nm. Such synthetic profile was then disturbed by a normally (Gaussian) distributed
random noise centered at each point with the standard deviation of 0.01 arb.u.. This noise is
almost three times larger than the experimental one (Nikoli¢, 1998). After that, fitting
procedure was performed, accordingly to the described method, with an initial set of
adjustable parameters:w, =0.015nm. dg, =0.015nm.y =0 and C, = 0.8 arb.u.-nm. Fig. ]

shows the resull of such initial guess. After eight iterations, with the stopping criteria that
the relative change in they? value should not exceed 0.5%, optimal values were obtain:
namely: wg =0.0265 nm, d, =0.0217 nm, ¥ =0.117 and C, =0.5025 arb.u.-nm. Fig. 2
shows the final result of fitting. Relative discrepancies between the artilicial and fitted
values are: 6% for wg ., 8.5% for dy . 16.5% tor A and 0:5% for C,,.
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Fig. 1. Comparison of the randomly disturbed synthetic convolution (o oo) with the model
convolution ( ) generated with an initial set of adjustable parameters: w, = 0.015 nm.
dg =0.015nm, y=0 and C, = 0.3 arb.u.-nm, before fitting.
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Fig. 2. Comparison of the randomly disturbed synthetic convolution (o co) witll the model
convolution ( ) generated with an optimized set of adjustable parameters: »w, = 0.0265 nm ,
d, =0.0217 nm, y=0.117 and C, =0.5025 arb.u.-nm, at the end of the fitling. Diferences
between those two convolulions (& e @) exibit random scatering.
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The estimated covariance matrix of the performed fitting procedure has the form
given in Table 1. According to Press et al. (1995), the 68.3% confidence intervals for the
values of the fitted parameters are: dwg =0.0012 nm, &d, = 0.0013 nm, &y=0.021 and

dC, =0.011arb.u.-nm

Table 1. Elements of the covariance matrix necessary for the estimation of the model parameters
standard deviations

[C] we (107" nm) d, (107" nm) v C, (arb.u.-nm)
we (107" nm) 3.08-107° 1.38-107° _357.107° 14.107°
d, (107" nm) 1.38-107° 3.54-107° ~455-107 5.107°

Y ~357-107° ~4.55-107 8.96-107° 22107
¢, (arb.u.-nm) 14.107° 5.10°" 22.1078 248.107°

7. RESULTS AND DISCUSSION

For the demonstrating purpose, some results (Nikoli¢, 1998) of exposed modeling
method for the neutral argon spectral will be presented. In the case of the isolated Arl lines.
the 425.9 nm spectral line is selected and given in Fig. 3.

T T T T L T T m| T T T T ‘v‘ T T T T T

0.071 T

Experimental (Abeled) profile

o

o

D
T

S 0.05- Fitted profile

Plasma parameters:
N, = 2.9 10" cm?
T, = 10750K

% Reterence profile 1
/ >
il from Geissler tube
0.00r- = e -
! L | | !

s ' | I | L ! .
4255 425.6 4257 4258 4259 426.0 426.1
Wavelength (nm)

L | |

426.2 426.3 426.4

[Fig. 3. Demonstration of fitting procedure in the case of Arl 425.9 nm spectral line (Nikolic, 1998)
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As representatives of two significantly overlapped neutral argon lines, Ar I
419.07 nm and Ar1 419,10 nm were taken (Nikolic et al., 1999). The final result of fitting

procedure for these lines is illustrated in Fig.4.

I - T y T y T v
0.05+  Experimental (Abeled) profile Fitted profile -
Ar | 419.07 nm line
0.04 - Ar 1 419.07 nm line N
3 L ]
-9: Plasma parameters:
< 0.03+ P ’ n
~ N, = 2.9 -10'8 cm?
_é‘ T, = 10750K
2 0,02 .
2
E F
0.01 - 7]
Relference profiles from Geissler tube
vl
000 ~ -]

| L | | |
418.8 419.0 419.2 4194 419.6

Wavelength (nm)

Fig. 4. Demonstration of fitting procedure in the case of two overlapped Ar I 419.07 nm and
Arl 419.10 nm spectral line (Nikolic, 1998)

As it can be seen from presented examples, described method results in fitted
profiles which are in very good agreement with the experimental one. The only drawback of
this method is long computing time - few hours for two overlapping lines - on pentium
based PC with 32 MB RAM.

8. CONCLUSION

The herein presented method for modeling the spectral line shape of neutral atoms
emitted from plasmas can be successfully applied under specified conditions. Existing
theoretical predictions for Stark parameters of investigated spectral lines can be verfied
directly from high-precision measurements, providing proper separation of all significant
broadening effects.
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