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Outline

1) Presentation of white dwarfs

2) Stark broadening calculations in WD atmosphere conditions

3) Zeeman effect in magnetized white dwarfs



White dwarfs: an overview

Source: Wikipedia

- WD are the end of the majority of stars (95 
– 97%) with M < 10M⊙

- About 10% of WD have strong magnetic 
field

- They have a stratified structure
- C, O core (99% M)
- thin mantle of He (1% M)
- envelope of H (< 0.01% M)

- They are classified by their dominant 
element in the atmosphere

- DA: strong hydrogen lines
- DB: strong He I lines
- DO: strong He II lines etc.

e.g. S. L. Shapiro and S. A. Teukolsky,
Black Holes, White Dwarfs, and Neutron Stars



Example of white dwarf spectrum
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Sloan Digital Sky Survey
http://www.sdss.org

Data from Belgrade Observatory (J. Kovačević-Dojčinović, M. S. Dimitrijević, L. Č. Popović)



Absorption lines in WD atmospheres

The outgoing radiation spectrum is obtained by solving the 
radiative transfer equation
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Modeling the extinction coefficient

Free-free transitions: inverse bremsstrahlung, Rayleigh scattering, 
Thomson scattering

Bound-free transitions: photoionization

Bound-bound transitions: photoexcitation (atomic lines)
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The bound-bound extinction coefficient

The depth of the absorption lines 
is determined by the bound-bound 
extinction coefficient
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Line broadening mechanisms

Wikipedia:
“A spectral line extends over a range of frequencies, not a single frequency”
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Some causes of line broadening:
- radiative decay (natural broadening)
- Doppler effect (thermal motion of atoms)
- collisions, Stark effect –d.E



Stark broadening in stellar atmosphere conditions

-4x10
-4

-2x10
-4 0 2x10

-4
4x10

-4

0

5x10
3

 Doppler broadening
 Stark broadening

 

 
 

N
o

rm
a

liz
e

d
 l
in

e
 s

h
a

p
e

Dw (eV)

Ha

N
e
 = 10

17
 cm

-3

T = 1 eV



Stark broadening modeling

When emitting or absorbing a photon,
an atom feels the presence of the charged particles
located at vicinity
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A Stark broadened line is proportional to the Fourier transform
of the atomic dipole autocorrelation function

d(t)
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Stark broadening modeling

Decrease time ~ 1/Dw1/2 “time of interest”



Calculation methods

Many models, formulas and codes have been developed:
- quasistatic approximation (-d.E = cst)
- kinetic theory
- collision operators
- stochastic processes (MMM, FFM)
- fully numerical simulations

They are complementary to each other

Their validity can be assessed through comparisons to 
experimental spectra,
and by cross-checking between codes
(e.g. SLSP code comparison workshop, Vrdnik, last week)



Lyman a
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Te,i = 5 eV

Calculation methods

SLSP5 (last week)



Fitting an observed spectrum
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A simplified atmosphere model: homogeneous medium
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Zeeman effect: the energy levels and corresponding spectral lines are 
split

Influence of an external magnetic field on spectral 
lines

B



Zeeman effect in magnetic white dwarf spectra

4000 4500 5000 5500

20

40

60

H

H

 

 

 
SDSS J111010.50+600141.44

In
te

n
si

ty
 (

a
rb

. 
u
n

it
s)

 (Å)

H

The separation between the components corresponds to B = 360 T

Data from Belgrade Observatory (J. Kovačević-Dojčinović, M. S. Dimitrijević, L. Č. Popović)



At very strong magnetic fields, the Zeeman triplet structure is no 
longer symmetrical
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quadratic Zeeman effect

Quadratic Zeeman effect

linear Zeeman effect



Quadratic Zeeman effect
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Quadratic Zeeman effect
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SDSS database
B. Külebi et al., A&A 506, 1341 (2009)

Ha Zeeman components

Observation on magnetic white dwarf spectra



Summary

White dwarf spectra contain information on the plasma parameters

Accurate models are required for line broadening: Stark effect, 
Zeeman effect

Ongoing work: quadratic Zeeman effect


