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Abstract - In a previously published paper a simple and fast-convergent method
using iteration factors is developed to solve two-level line transfer problem in a con-
stant property medium. In this paper a spatial variation of the profile function is
taken into account aad a new iteration factors family is considered.

1. Introduction

In a previously published paper (Simonneau and Atanackovié-Vukmanovié, 1991),
henceforth reffered to as Paper I, a simple and fast-convergent iterative method is
developed to solve the two-level line transfer problem. The method represents an
efficient way to accelerate A iteration scheme by the use of the quasi-invariant depth
—-dependent functions, so- called iteration factors.

In the two-level atomic case where the explicit form of the line source function
enables a straightforward derivation of the angular and frequency integrated moments
of the radiative transfer (RT) equation, the factors are defined as the ratios of the
relevant radiation field intensity moments. Computed at the beginning of each iter-
ation step from the formal solution of the RT equation with the given (old) source
function, the factors are then used to close RT moment equations and, hence, to give
new radiation field, i.e. new source function.

In order to check the convergence properties of the method in Paper I we consid-
ered the case of the constant property medium whose exact solutions are well known.
The assumption made throughout the paper about depth independence of the profile
function ¢, enabled frequency integration of the differential RT equation over profile
function and definition of the corresponding closure relations.

Here we consider the case when ¢, is some specified function of depth. The
iterative procedure described in Paper I can be directly applied. The only difference
is that in getting RT equation moments the operator f[..]dz and not f[..]p;dz must
be used.

2. The line formation with spatial variations in Doppler width

For the sake of simplicity in presentation we shall consider the time independent
RT equation for a one- dimensional, planar and static medium with no background
opacity. Using the standard notation, RT equation has the form:

y%[(p,x,‘r):(p(:z:,T)[I(p,l',T)—S(T)] ’ (1)

where the line source function S(7) under the assumption of complete redistribution

is given by:
[ee]

S(tr)=¢eB(r)+ (1 - e)/ p(z,7)d (2, 7)dz . (2)
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For pure Doppler broadening, ¢(z,7) is given by the Gauss normalized profile func-
tion: 1
L LI 3
SO(.'L',T) \/;6(7-)8 ) ( )
where z = (v — vg)/Av}, is frequency displacement from line center in some stan-
dard frequency interval Av}, (Doppler width at some reference depth point), and the
parameter 6(7) is given by:
AVD(T) (4)
Avy,
In order to solve eqs. (1) and (2) with y(z, 7) given by (3) we proceed like we did

in Paper I. After getting the angular moments of eq. (1) by applying the operators
J ..dpand [ ..pdu, we perform their integration over line frequencies ffooo dr to get:

é(r) =

dH
_d—‘r'_:JLP_S:E(J‘p—B) (5(1)
dK
7y = He - (5b)

In the above expressions we used eq.(2) and the following notation for the frequency
moments:

H :/H,;da:, K:/sz:r , J¢=/Jx<pxdz, H¢=/Hrgoxdz .

The system of two differential equations (5) with four unknown intensity moments
needs two additional relationships to be solved.

Here we consider the most straightforward way to close the above system, i.e.
the following iteration factors family:
_ K H

=7 ’fH:H_‘p' (6)

F
The two factors take into account the anisotropy of the radiation field as well as the
repartition of the energy over frequencies within the line profile. The factors are to
be computed according to their definitions using the formal solution of eq. (1). Given
the factors, the system (5) that can be rewritten using (6) as:

dH €

E'_ = ;:I\ —¢eB (7(1)
dK 1

—= ——-fHH , (7b)

is easily solved for the unknown moments H and K. New source function

K(7)

S(ry=eB+(1-¢) F(r

~

is then used to start the next iteration step.
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3. Results and discussion

For the case of pure Doppler broadening, depth dependence of the profile function
@(z, 7) means a depth variation in Doppler width Avp(r). We shall make some tests
of the above described procedure and the proposed family of the iteration factors
specifying the spatial variations in Doppler width Avp(7) in the form similar to the
one given in Rybicki and Hummer (1967) and in Athay (1972). Namely, we consider
two cases: (a) "cool” and (b) "hot” surface layer defined, respectively, by:

Avp(t) =2 —e 47 (8a)

Avp(t) = 1447 (8b)

For Av}, we take Doppler width at great optical depths. The behaviour of parameter
8(r) for both cases and for three different values of A =10~ 1.10-2 and 10~3 is shown

in Fig.1.
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Fig.1. Parameter §(7) characterizing spatial variation of the profile function
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Fig.2. Source function vs. logr in variable property media
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The source functions obtained for the two cases (a) and (b) (Fig.1.) and for the
semi-infinite medium with ¢ = 10~* and B = 1 are shown in Fig.2. The case of depth
independent profile function (§ = 1) is presented by the dashed curve. Curves labeled
by n = 1,2,3 correspond to three different values of coefficient A = 10™" in depth
varying Doppler width (eq.(8)).

The effects of depth—variations in profile upon the line source function are widely
studied by Rybicki and Hummer (1967), Athay (1972). The behaviour of S(7) ob-
tained by our method and shown in Fig.2. is in a good agreement with the solutions
considered therein. For a ”cool” surface layer in all three cases S(7) lies below the
value S(6 = 1) due to a greater escape probability in the line wings (the profile ¢, is
much narrower than in the § = 1 case). Besides, the thermalization length increases
when Avp grows deeper in the medium. The rate of convergence grows also with
the thermalization length (see Table 1). With relation to 39 iterations needed for the
convergence in § = 1 case, cases in which the increase of Avp happens deeper require
more iterations. In a "hot” surface layer, values of S(7) are much larger than in the
case § = 1 due to wider wings in the absorption profile that intercept the emergent
photons. The so—called reflector efect on the radiation flowing up implies a decrease
in thermalization length. The corresponding rate of convergence is very high (only 8
iterations are needed for the case 4 = 1073).

Table 1. Number of iterations necessary to achieve the convergence (¢ = 1074, B = 1,
(a) "cool” surface layer, (b) "hot” surface layer)

A (a) (b)
10~ 42 28
10-2 59 13
11 73 8

The above results are obtained by the use of the most straightforward family
of iteration factors. According to the results given in papers by Atanackovié- Vuk-
manovié¢ and Simonneau (1991, 1993), we expect that the significant improvement in
the rate of convergence would be achieved by an explicit treatment of the non-local
(active) part of the radiation field.
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