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ON THE ONE TYPE OF THE RESTRICTED
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Summary: One type of the restrected three-body problem is formulated. The first inte-
grals and the exact solutions are considered as they stand to the corrensponding ones in the
general three-body problem. Equations of motion in Jacobi coordinates are expanded over
Legendre polinomials, which gives suitable form for studing of the so called stelar configu-
rations of the three-body problem.

1. INTRODUCTION

In general three-body problem (GTBP) of classical celestial mechanics
subject is the motion of three material points which simultaniously attract
each other by Newtonian gravity. It has been proved (Sundman, 1913) that
solution of the problem can be expressed in the form of convergent series,
but convergence is so slow that solution is practically unusable (Duboshin,
1964). Celestial mechanicists have formulated a few simplier problems (based
on GTBP) which have some practical importance and are known as restricted
three-body problems (RTBP) (for review see Szebehely 1962).

If mass of one of the three bodies, let’s say mq, is significantly greater than
the sum of the other two masses (mg > m;+ms, and m; and m, are of the same
order of quantity) than it is reasonable to expect that gravitational influence
of bodies m; and m, on body m, will be negligable. In general, gravitational
attraction between bodies m; and m, could be negligable also, and as it was
stated by Hénon and Petit (Hénon and Petit, 1986.) than problem reduces on
two, practically independent, two - body problems for pairs (mg—m,) and (mo—
my). However, these authors have also noticed that if relative distance between
bodies m; and m, is ”sufficiently small, their mutual attraction becomes of the
same order as the differential attraction from my”, then their mutual attracion
can not be neglected, and they classified such types of problems as Hill’s type
problems.

2. FORMULATION OF THE PROBLEM

In order to simplify GTBP, no matter how distant are bodies m; and m»
from each other, one can entirely neglect the influence of bodies m;, and m,
on body mqg (or fix body mo with inertial reference frame). More generally,
no matter how masses my, m;, m, are related, one can fiz body my in order
to obtain a type of RTBP. In that case problem would be to find the motion
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of bodies my and my if they are atiracted by fized body and by each other, and
if initial conditions are known. Comparing with problem of two fixed centers
(e.g. Duboshin, 1964), this problem is in some way opposite and could be
called problem of one fixed center. On the other side comparing this problem
with various versions of RTBP one can see that, it is more complicated since
motion of two bodies is not known. Here, we will just make note that type of
problems in which one has mass configuration my > m; + m, are very often
classified as stelar types three body problems (e.g. Roy, 1982).

3. THE EQUATIONS OF MOTION AND THEIR EXACT SOLUTIONS

The equations of motion (notations are taken form fig. 1) in case explained
in the previous chapter are:

d2r1 1 r
'd7 —Gmyg 3 + szﬁ’ (1)
dr, ro r
‘zlt—z = _Gmo;‘_zg — Gm1 r—s, (2)

where gravitational accelerations which bodies m; and m, are giving to the
body mg are entirely neglected (or say the third equation from GTBP is ne-
glected) because we put ¥y = ro = rg = 0. The equations of motion (1) and (2)
of bodies (my,m;) posses two first integrals (integral of angular momentum
and integral of energy) which could be easily checked by direct calculation.

Figure 1.

The conservation laws are valid in this problem as in GTBP, but the
integrals of motion of barycenter dissapeared because mg is fixed. On the
other hand situation with exact solutions is different. While in GTBP two
types of the exact solutions exist (colinear and triangle type), in this case one
has colinear type only.

It is well known that if center of mass of the bodies m; and m, coincides
with the position of the body mg, and if initial velocities of bodies m; and m,
are in directions making a fixed and the same angle with their radius vectors
respect to the barycenter, than the equations, (1) and (2) can be integrated
in the finite form. Actually these equations are becoming one and the same
equation:
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d’r; m' +8m0 .
_dt—z__ G—— ' ri (Z—l,?), (3)

where m’ = m; = my (that is the consequence of the condition, about coinci-
dence of the body my with the center of mass of the system m;-m,, mentioned
above). In the equation (3) one can easily recognizes the equation of two body
problem. Finally one can conclude that simplified colinear exact solution ex-
ists in this type of RTBP. It is simplified because my has to be exactly on
the half of the distance between m; and m, (which is also cosequence of the
condition about coincidence of the body m, with the center of mass of the
system m;-my).

4. THE EQUATIONS OF MOTION IN JACOBI COORDINATES. COM-
PARISCN WITH GTBP

Let us skip now to Hill’s configuration of this problem. Relative distance
among small bodies (denoted by r) is very small (by magnitude) comparing
with distance from their center of mass to the large mass (denoted by R), (see
fig. 1). Than we have desirable mass configuration and also » <« R. In such
kind of problems when hierarchy in configuration is discrenable, Jacobi coordi-
nates R, r, are very convinient. If we put m = m;+m, and u = myms/(m; + ms)
then equations of motion (1) and (2) in Jacobi coordinates will take the fol-

lowing form:
d’R mo 1 1
w =B i) rra( ) @

d’r 1 1 1 ma
i+ Ofr=—om|(s-cs)Re L(HmA ) 0

If one compares these equations with corrensponding equations of GTBP, in
Jacobi coordinates (see Roy, 1982, p.413) only small difference in equation (4)
will be noticed (instead of my on the right hand side one has mq + m, while
equation (5) keeps the same form as in GTBP. Another, essential difference, is
that noninertial motion of myq is neglected, while in GTBP mq has noninertial
component of motion respect to the barycenter.

Functions in small brackets appearing in equations (4) and (5) can be
expanded in series over derivatives of the Legendre’s polinomials. If P,(!)(z)
is being derivative of Legendres polinomial Py(z) over z (z = cos ¢ where ¢ is
angle between vectors r and R), equations (4) and (5) could be written in the
following form:

d’R -
= G ‘R=-G2L Z ByR + Apr)AF-1 P M (cos o), (6)
d’c m mg k=1 p (1) _
Frotes G-rgr = —Gﬁr E(AkR F Cyr) A" Pt (cos ), (7)
k=2
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where

- (=1)%~1my ¥~ 2 4 m,*-2

B (_l)k—lmlk—l . m2k—1
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mk

,.
. (k=2,3,..); A=
Coeffitients A, By and Cj are all in the interval [-1,1] for k¥ > 2. Condition
A < 1 should provide that bodies m; and m, will be in binary system which
will itself move around myg.

Difference between equation (6) and corresponding equation in GTBP is,
as one would expect, very small again. In all the places where mo appears in
the (6), one should put mg + m in order to obtain corresponding equation in
GTBP. Equation for r (7) has again the same form as in GTBP. Right hand
sides of equations (6) and (7) in this case could be treated as ”perturbations”
of two two-body problems (for r and R). Perurbations are then separated into
two components in directions of vectors R and r and expressed in form of the
series which should converge for sufficiently small A.

Ck

5. CONCLUSION

Differences and similarities of RTBP and GTBP are clearly showing that,
by complexisity, RTBP stands somewhere between GTBP and restrected three
body problems (previously formulated). On the other side Jacobi form of the
equations of motion (equations (6) and (7)) give suitable form for step by
step study of Hill’s configuration of RTBP as well as GTBP (since they are
very similar), by including higher order approximations. At the end we will
note that planar version of this problem looks even more promising for further
analysis.
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