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Abstract. The planar Schwarzschild-type (n + 1)-body problem with n equal masses
admits, for certain initial conditions, a class of exact solutions consisting of regular polygons
(the n equal masses at vertices, the (n + 1)th mass at centre) of changing side length, and
rotating nonuniformly around the centre. The various types of rclative equilibrta which are
met among these configurations are taken as the basis for a 3-dimensional restricted problem.
The existence of the Jacobi integral within this framework is proved.

1. INTRODUCTION

A special class of exact solutions in the Newtonian planar (n + 1)-body problem
{n > 2) has been pointed out by Elmabsout (1988) in the case of n equal masses
initially placed at the vertices of a regular polygon centered in the (n + 1)th mass.
Geometrically, the solution represents a regular polygon of constant sides, uniformly
rotating around the central mass. Etmabsout (1990, 1994, 1990) also investigated the
stability of this configuration. Grebenicov (1997) found a new class of exact solutions
for the above problem: the configuration of rotating regular polygon is preserved, but
this time the side length and the angular velocity are changing.

Among the configurations pointed out by Grebenicov, there are stable relative
equilibria (uniformly rotating polygon of constant dimensions). Taking such a config-
uration as the basis for a 3-dimensional restricted problem, Grebenicov (1998) proved
that the respective problem admits the Jacobi integral; Gadomski (1998) extended
this result to homogeneous potentials.

In the present paper we tackle the more general case of Schwarzschild-type fields
(featured by potentials of the form o/r + 8/r3; r = distance between two particles;
@, # = real nonzero constants), which model concrete problems belonging mainly
to astronomy, but not only (see Stoica & Mioc (1997) and the references therein).
Mioc et al. (1998) proved that, given the initial polygonal configuration considered
by Elmabsout and Grebenicov, the respective (n + 1)-body problem is equivalent to
n separate, identical, Schwarzschild-type two-body problems, therefore the regular
polygonal configuration is kept all along the motion, but the side length and the
rotational velocity are variable in general. The motion of every particle with respect
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to the central mass is governed by the solution of the Schwarzschild-type two-body
problem, whose qualitative behaviour was fully described by Stoica & Mioc (1997),
for the whole allowed interplay among field parameters, angular momentum, and total
energy. Obviously, every kind of evolution in the two-body problem corresponds to a
behaviour of the polygon in the (n + 1)-body problem.

Among the possible evolutions of the polygon, there are many types of relative equi-
libria (polygons identical with the initial one, stable or unstable, rotating or fixed).
Considering the motion of an infinitesimal mass in the Schwarzschild-type field gener-
ated by such an equilibrium configuration, we prove that the corresponding restricted
problem admits the first integral of Jacobi.

2. POLYGONAL PROBLEM

Consider the (n + 1)-body problem with masses mg, mi = m # mg (k = 1,n), let
ar = (&, 7, Ce) € R3, k = 0,7, be the position vectors in an inertial frame, and
let @ = (qo,q1,.-,q9n) € B33 be the configuration of the system. Let the n + 1
particles be interacting according to a Schwarzschild-type law, characterized by the
force function U : R3+3\ A — R, with

U(q) = Z (A~ki/7'ki + Bki/rgi) - (1)

0<i<k<n

Here 74 =| qr — qi |, A = Uocick<n{a | q; = qi} stands for the collision set; Agi,
Bk, R? — R feature the mteractxon between the k-th and the i-th partlcles A;,, =
A(mk,m,) = (m,,mk) = Ajx (of course, in our conditions, Apo = Ajo # A], = A,
k,i,7 = 1, n; similar relations hold for By).

Consider the relative motion of the n equal masses with respect to mg . The rel-
ative position vectors will be ri = (zx, ¥k, 2x) = (€ — o, 7% — Mo, {k — (o), hence
Tei =| vx — 1y | With the abridging notations (for k,i = T, n):

Al _mog+m /gko Al _ 1 éki AT 1 ALO (2)
B|" mem |Brwo]|’' |B'] m|Bu) |B"| Bo ]

and rg = |ri|, the relative motion equations can be written

fr = — (A/r} + 3B/r}) vr + ORk(rk,1)/0rr, k=T n. (3)

where Ri(re,t) = Yoy i [(A'/rei + B [rd) = (A" [r} 4+ 3B [7]) xx - xi].

Obviously, the problem admits the ten well-known first integrals. Among the inte-
gration constants, we denote h = energy constant, é(e R?®) = angular momentum
constant.

Mioc et al. (1998) tackled the planar case (z; = 0, k¥ = 1, n, all along the motion)
in polar coordinates (7, 6;), and proved the following result:

THEOREM 1. Let the masses mg, mi = m # mg (k = 1,n) be interacting accord-
ing to a Schwarzschild-type law. Lel my be initially (1 = 0) situated at the vertices of
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a regular polygon centered in my, and led the inilial velocities form a vector field sym-

metrical with respect 1o my. Then, all along the motion, the equal masses will form
a regular polygon (centered in mg), homothetic with the initial polygon, and rotating
around mo with variable angular velocity. The motion of every mass m with respect
to my 1s given by the solution of the Schwarzschild-lype two-body problem.

This means that the relative motion of every mass my = m, k = 1, n, is governed
by the equations

0k + 2710, = 0,
with the first integrals of energy and angular momentum
i+ r%@f —2a/ry—2B/ri = k;
rzO'k =C,

(h and C being the respective constants), and with the regular polygonal solution

re(t) = ri(t), 6c()=0,(t)+2x(k-1)/n, k,i=1,n.

We have to emphasize that the parameters o, 8 (Mioc et al 1997), h and C,
common for every pair (mg, mg = m), generally differ from the corresponding pa-
rameters featuring the initial (n + 1)-body problem.

3. RELATIVE EQUILIBRRIA

Studying the Schwarzschild-type two-body problem, Stoica & Mioc (1997) pointed
out equilibrium configurations: circular motion (C # 0) or rest (C = 0) at
relative distance 7., stable (r. = rgg) or unstable (r = ryg), with rgp =
(=20 — Vda? + 3hC?) [ (3h), rug = (—2a + V4a? + 3hC2) [ (3h) (for h = 0, ryg =
g = \/B/a), provided the existence of the radical.

We are now in the position to state the following result:

THEOREM 2. There are relative equilibrium solutions (ry = r., k = 1,n) of the
Schwarzschild-type polygonal (n+1)-body problem. In case C # 0, the regular polygon
of constant size rolates uniformly with the angular velocily w := 0, = C/r%. In case

C =0 (C =0), the polygon is fizred (w = 0).

Proof. Taking into account the above mentioned results obtained by Stoica & Mioc
(1997), as well as Theorem 1, the proof of Theorem 2 follows immediately.e

Let us mention the situations in which the interplay among a, 8, k, C leads to
relative equilibria in the Schwarzschild-type problem. These situations are: (a) a > 0,
B> 0,C # 0, —4a%/(3C?) < h; for h < 0, there exist rsp and ryg (see above);
for h < 0 and C? = 4/af, there exists rf;; for h > 0, there exists ryg; (b) a < 0,
B > 0, h > 0; for both C # 0 and C = 0, there exists ryg; (¢) @ > 0, 8 < 0,
-4a?/(3C?%) < h < 0; for both C # 0 and C = 0, there exists rgg.
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4. ASSOCIATED RESTRICTED PROBLEM: JACOBI INTEGRAL

We shall take such a relative equilibrium configuration as the basis for a 3-dimensional
restricted problem. So, consider the motion of an infinitesimal mass g in the
Schwarzschild-type field generated by the (rotating or fixed) constant size polygon.
Let d = (z,y,2) € R® and di, = (z — z4,y — yx, 2 — zx) € R3, k = T, n, be respec-
tively the position vectors of p with respect to mg and mi(= m), and denote p = |d|,
pr = |di|- It is needless to say that the 3-dimensional frame in which we tackle the
motion of p is originated in mg and has the polygon plane as fundamental plane.
The relative motion equations of u read

d=- (A/p3 + 3B/p5) d + OR(d,1)/0d, (5)

where R(d,t) = Y 1., [(A’/pk + 3’/p2) —(A"/r}+3B"/v?)d - dk], and we de-
noted (A,B,A",B') = (A,B,A",B)(m = p) (see (2); we must emphasize that

A,
A, B, A", B are finite nonzero quaantities).

THEOREM 3. The restricled problem associaled to the relative equilibrium solu-
tions of the Schwarzschild-type polygonal (n + 1)-body problem admits the Jacobi first
wintegral.

Proof. Let us pass to a uniformly rotating frame (in which mg, my = m, k=1,n
are fixed) via the transformations

)

y = Xsin(wt) + Y cos(wt),

¢ = X cos(wt) — Y sin(wt),
=1,

and similarly for (zk, ¥k, 0) — (X, Y%,0), k = 1, n. In the new variables, (5) - written
in scalar form - become

X - WY —w?X = — (A/p3 + 3B/p5) X + OR*0X,
V4 2wX —0?Y = — (A/ps + 3B/p5) Y +0R* /Y, (6)
Z=— (A/p3 + 3B/p5) Z+0R" /02,
where R*(X,Y,Z) = R(z,y,z,1). Obviously, p* = X? + Y2 + Z% and p? = (X -
X))+ (Y - V)% + 22

Multiplying respectively equations (6) by X, Y, Z, adding the resulting expressions
together, then integrating with respect to time, we get

(X2 +V2422) 2= (X2 Y2) /24 (Afp+ BI6*) + R+ 172, (T)
where h* is a constant of integration.
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Observing that the relative equilibrium {ry = r,, 8 = wt + 2n(k — 1)/n} implies,
in the new coordinates, Y ;_, X¢ = 0, Y.7_, ¥i = 0, and replacing this in R*, we
easily obtain

(3242 4 2%) /2= 0 (X2 4+ Y?) 2+ (/) $B/5°43) (/i + B'192) 40 /2,
k=1

which is nothing but the Jacobi integral. Theorem 3 is proved.

To end, we have to emphasize that, although the qualitative result is the same, the
set of relative equilibria which form the basis of our restricted problem is more rich
(as regards stability/instability, or rotation/rest) than those revealed by Grebenicov’s
(1998) or Gadomski’s (1998) papers.
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