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Abstract. Three methods of the data smoothing: the least — square collocation (LS(!),
the Vondrdk (WRV) and the cubic spline {(SPL) are applied to the polar motion data. Some
advantages of the smoothing by LSC method and the comparison with other two methods
(WRYV and SPL) of filtering and smoothing are shown.

1. INTRODUCTION

The astronomical data. as the polar motion data, represented by the observed values
;. can be separated into the signal s; (or the systematic changes of the rueasured
values) and the random errors n; (the errors of ohservations). We want to remuove n,
from the raw data [; before the analysis. Let the values n; represent the white noise.
The 1deal method of smoothing is the one which removes only the random part from
the raw data and does not change the systematic part (the signal).

In the astronomical practice (like it was in the practice of BIH and now of IERS)
the WRYV method is commonly accepted and the alternative method is SPL. but the
SPL is not superior to WRYV in any sense. The LSC method. first applied in geodesy.
gave good results also n the astronomical practice for the last few years. We want to
show here some advantages of the smoothing by LSC.

The LSC is a linear transform s; = F;. It is a method of stochastic filtering. With
good knowledge of the autocovariances of the signal it is possible to filter the noise
most optimally and to estimate s; {close to s; as much as possible). The theoretical
hase was established by Moritz (1980). To miake the algorthm we used the paper by
Giubanov and Petrov (1994) wherein sonie formulae were corrected for some mistakes,
and also the paper Titov (1995).

The sertes §; and s; (where i = 1,2, ... N) are centred and equidistant.. We nse here
the raw values of « and y — compouent of the polar motion (1ERS, 1993) over the
interval [JD 2437669 (04.1 1962) ~ JD 2440664 (18.111 1970)] and the input data are
5 days spaced (N = 600).

Let us consider the series [; and s; as vectors Land s. ‘Then, the problem of filtering
the noise is to determine the operator F which satisfies the condition ||3 —s||* = min
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(Gubanov and Petrov, 1994). It is only necessary to know some of statistic character-
istics of the signal (which can be known a priori), but not its mathematical model.
In LSC we presume that the covariance function of the signal is known, the vector n
does not have correlation, the signal and the noise are not mutually correlated.

By solving the problem of filtering by the LSC method, the autocovariance function
of the signal (g,,) should be obtained. There are several different ways to do it (Titov,
1995): using of the variance of the white noise o2 (obtained by approximation of raw
data covariance function in vicinity of zero), using of the descending exponential model
of covariance function or using of the covariance function obtained from independent
observations.

We had already performed the filtering by LSC method after estimation the vari-
ance o2 (Damljanovi¢, P.Jovanovié and B.Jovanovi¢, 1996). The autocovariance func-
tions qu(j) of the vector 1 and g,4(j) of the signal s can be estimated by the formulae
presented by Gubanov and Petrov (1994). Then, 02 = g;(0) — ¢,5(0). The basic for-
mula of LSC for filtering the noise is: § = Q,,Ql_lll, where Q,, and Qu are covariance
matrices (with symmetric form) of the signal and raw data. A form of @,; and Qu
was given by Damljanovié et al. (1997), wherein the descending exponential model of
covariance function was used.

Neither of algorithms, in our opinion, were sufficiently satisfactory. Therefore, in
this paper we use gy and its approximation ¢,,, but now the values ¢ () (where j =
0,1,..., N —1) are fitted by elementary trigonometric functions using the B.Jovanovié
(BJ) method for approximation of arbitrary numerical data set as a sum of linear
function, harmonics and exponential functions (B.Jovanovié¢ 1987, 1989, 1997).

2. RESULTS

The BJ method belongs to a class of algebraic harmonic analysis methods. The ana-
lytical representation of g, is developed here in the form

Gos(§—1) =) Aicos(wit; +4;), j=LN
=1

by use of BJ method and, thereupon, the LSC procedure is applied. In Table 1. are
presented the calculated values for A;, w; and ¢; (for the epoch JD 2437669); m = 22.

Raw and filtered data (by LSC, WRV and SPL) of 2 and y coordinates of the polar
motion are shown in Fig. 1. and Fig. 2. The values smoothed by LSC follow better
the raw data and differ remarkably from the ones obtained by other two methods
(WRV and SPL). We determined the value of € (the smoothing parameter of WRV)
as explained in Vondrak (1977) and as we did it in Damljanovi¢ et al. (1997); e = 108
for z - component and € = 1.5* 10~ for y. The value of % is 0”.019 for both (z and

N-1 . _1\2
y) components, where 64 = \/ E-EJA(,I_';‘—I') The smoothing parameter S of SPL

method (Reinsch, 1967) is the mean value of the confidence interval [N — 2N, N +
V2N] (for a normal distribution of errors). Hence, S = 600.

The values of standard deviations (¢) of the residuals, after smoothing by LSC,
WRY and SPL, are: 0”.018, 0”.019 and 0”.020 respectively, for z - coordinate (0”.021,
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Table 1.
X - coordinate y - coordinate
1 AN wi(rad/day) | ¢:i(°) AN wi(rad/day} | 4i(°)
1] 0.63971E-02 | 0.14518E-01 29.85 || 0.61126E-02 | 0.14518E-01 32.53
L2 Il 0.48210E-02 | 0.13863E-01 -40.26 || 0.48488E-02 | 0.13865E-01 | -42.64
' 31 0.31260E-02 | 0.16396E-01 -27.96 || 0.27547E-02 | 0.16396E-01 | -26.09
4 || 0.31050E-02 | 0.17238E-01 34.63 || 0.23006E-02 | 0.17238E-01 39.79
51| 0.12951E-03 | 0.32444E-02 | -50.28 || 0.99046E-04 | 0.38768E-02 44.99
6 || 0.10997E-03 | 0.20289E-01 | -36.24 || 0.55450E-04 | 0.32444E-02 | -44.70
7| 0.86053E-04 | 0.38768E-02 45.76 || 0.34549E-04 | 0.77396E-02 | -40.85
8 || 0.43833E-04 | 0.77396E-02 3.69 || 0.34367E-04 | 0.20289E-01 | -111.39
9 i 0.31511E-04 | 0.29727L-01 39.41 || 0.15015E-04 | 0.29727E-01 94.10
10 {| 0.16513E-04 | 0.26601E-01 | -160.96 || 0.91291E-05 | 0.34666E-01 -28.39
111 , 0.11377E-04 | 0.43989E-01 -83.78 || 0.84060E-05 | 0.26601E-01 | -14.56
12 || 0.72003E-05 { 0.31015E-01 77.95 || 0.51723E-05 | 0.10222E400 | -20.78
13 || 0.63945E-05 | 0.34666E-01 3.40 || 0.24350E-05 | 0.55799E-01 68.08
14 || 0.59154E-05 | 0.58496E-01 -44.36 || 0.23394E-05 | 0.69029E-01 | -136.49
15 | 0.53794E-05 | 0.69029E-01 | -161.07 || 0.18726E-05 | 0.84597E-01 42.04
16 || 0.42413E-05 | 0.35799E-01 | -112.74 | 0.14712E-05 | 0.86671E-01 | 151.46
17 || 0.40723E-05 | 0.48301E-01 | -128.11 || 0.14684E-05 | 0.43989E-01 | -179.46
18 Y 0.37985E-05 | 0.10222E+00 | -128.60 || 0.13990E-05 | 0.80912E-01 | -44.40
19 0.27058E-05 | 0.86671E-01 | -39.40 || 0.13746E-05 | 0.91576E-01 | 153.43
20 | 0.21626E-05 | 0.91576E-01 | 174.63 || 0.11770E-05 | 0.51015E-01 | 168.33
21 1| 0.17467E-05 | 0.34597E-01 65.41 || 0.10192E-05 | 0.48301E-01 | 127.80
22 || 0.12641E-05 | 0.80912E-01 | 167.22 || 0.78937E-06 | 0.58496E-01 | -142.47

0”.019 and 0”.019 for y). The residuals are the differences between the smoothing
curve (by LSC, WRV and SPL) and the raw data. The amplitude periodograms,
by direct Fourier transforms (FT), of these residuals are shown in Fig. 3. for z -
coordinate (in Fig. 4. for y). The residual systematic errors exist in the case of WRV
and SPL smoothing, because it’s evident that the peaks for Chandler and annual
periods by FT are remarkably greater than ones in the case of LSC. It was not
possible to separate the Chandler and annual wobbles by FT (see Figures 3. and 4.)
because of the short interval (about 8 years).

3. DISCUSSION

The LSC method does not require any smoothing parameter, and that is not the case
in WRV and SPL methods. With good approximation of signal covariance function,
the LSC is very suitable method for filtering the errors of observations. All three
methods are flexible.

The largest systematic errors of residuals (after smoothing by WRV and SPL)
appear in the Chandler residual and annual oscillations (see Fig. 3. and Fig. 4.), but
in the case of LSC they are negligible. The systematic discrepances remain in the
residuals because the WRV and SPL are the smoothing methods using the third
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Fig. 3. FT of residuals (x - coordinate)
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Fig. 4. FT of residuals (y - coordinate)

order polinomials, but the real data include a few harmonic oscillations. The smooth-
ing curve by LSC better follows the raw data than WRV and SPL smoothing curves
(especially at the beginning of the interval).

As it can be seen, the LSC method holds the indicated advantages and can be
successfully used for the astronomical purposes.
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