Publ. Astron. Obs. Belgrade No. 60 (1998), 87 — 90 Contributed paper

NONLINEAR COHERENT STRUCTURES
IN PLASMAS AND FLUIDS

J. VRANIJES
Institute of Physics, P.O. Boz 57, Yu-11001 Belgrade, Yugoslavia
E-mail vranjes@casandra.phy.bg.ac.yu

Abstract. Nonlinear electrodynamic and hydrodynamic equations having solutions in the
form of coherent stationary vortices and vortex chains are presented. In most cases they
are capable of depicting the observed nonlinear structures in various laboratory and space
plasmas.

Nonlinear coherent structures, double and monopole vortices (Hasegawa and Mima,
1977), and vortex chains (Shukla and Stenflo, 1995; Vranjes and Jovanovié, 1997), re-
sulting from the self-organization of both {usion and space plasmas, have attracted a
lot of interest in the last twenty years. They may appear in various processes such as
nonlinear interaction of a strong pump propagating through a plasma in the processes
of plasma heating, with slow low frequency perturbations normally existing in plas-
mas (Jovanovi¢ and Vranjes, 1996), in the development of some plasma instabilities
(Aleksi¢ et al. 1996; Jovanovié and Vranjel990, 1994) etc. Recently it has been shown
that equations describing low frequency electrostatic waves in a sheared plasma flow
in the auroral ionosphere (Shukla et al. 1995) and waves in large self-gravitating astro-
physical clouds (Shukla and Stenflo, 1995), possess solutions in the form of traveling
vortex chains periodic in the direction of propagation and localized transversely to it.
Recent satellite observations of electromagnetic structures in the Earth’s 1onosphere
and magnetosphere, and corresponding theoretical model equations (Chmyrev et al.
1991), reveal that apart from monopole and dipole structures, there also may exist
coherent solutions in the form of vortex chains. It is believed that the manifestation
of such vortical structures in the magnetosphere are the discrete fluxes of electrons in
active auroral forms, which occur due to acceleration of electrons by the electric field
component directed along the magnetic field lines. Vortex solitons obtained recently
from the Freja satellite (Wu et al. 1997) with characteristic spatial scales of 300-600
m, can be nicely described using standard nonlinear theory of drift waves, developed
in order to describe the drift wave turbulence in present day tokamak machines.

A typical equation describing vortices may be derived using the standard model
of two-component, electron-ion plasma immersed in an external magnetic field Bpé,,
with the equilibrium density gradient dng/dx, and in the limit of low-frequency (in
comparison with the ion gyrofrequency) electrostatic perturbations. Using standard
hydrodynamic equations, 1.e. the ion continuity and momenturn equations, and the
assumption of quasineutrality and Boltzmann distribution of electrons, one can obtain
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the well known Hasegawa-Mima equation (Hasegawa and Mima, 1977) which can be
written in the form:

2

% (P22 — @) — 7’;—0 [(V® x &) - V] [v2<1> - pTTee log (g—")] =0. (1)
Here the assumption of cold ions is used and p, Q;, T, ¢ are the ion gyroradius,
ion gyrofrequency, electron temperature, and electrostatic potential, respectively. In
the linear regime Eq. (1) describe ordinary drift waves. The most simple nonlinear
process described by the above equation is the three wave interaction in plasmas. A
characteristic cascading of wave energy towards larger and smaller wave numbers &
can be easily demonstrated, meaning that the mode with the intermediate value of &
may act as a pump. In the strongly nonlinear regime Eq. (1) possesses solution in the
form of a double vortex traveling with a constant velocity perpendicularly both to
the density gradient, and the magnetic field lines. Although it is not the soliton in the
strict sense it is remarkably stable and may survive different types of perturbations
like collisions with other vortices etc.

It is interesting to note that there exists an analogous equation in the hydrodynamic
theory of Rossby vortices; exactly the same equation describing cyclones and anti-
cyclones in the Earth’s atmosphere may be obtained replacing ® by the perturbation
of the surface of the atmosphere 8h, and the ion gyroradius by the Rossby-Obukhov
radius rg. The best known example of the monopole solution of the Rossby equation
is the Great Red Spot on Jupiter, observed by R. Hooke as far back as in 1664, and
described in his paper (Hooke, 1666). It is an anticyclone vortex which extends about
26 000 km in longitude and 13 000 km in latitude, drifting westward with the velocity
of about 3 m/s, and can be modeled by relatively simple experiments with rotating
fluids (Nezlin, 1986). The White Ovals, lasting for more than 50 years, and Brown
Ovals (more than 10 years) are another examples of long lasting vortices on Jupiter.

Vortex-type structures may also be found in large self-gravitating magnetized
plasma clouds (Jovanovié and Vranjes, 1990). Starting from a model of a homogeneous
cold plasma cloud we study Alfven-type two dimensional perturbations propagating
perpendicularly to the magnetic field. Using standard electro-hydrodynamic equa-
tions with the gravitational effects included via Poisson equation one can obtain the
following set of coupled nonlinear equations describing perturbations of electrostatic
(®) and gravitational (T') potential:

o, 1 Q2
[a + B_O(Cz X v_LQ) ) VJ_:| zi V.L¢ - (VZ.L + 1)F = 0’ (2)

o 1. Q2
{5?-*-3—0 CZXV_L ((I)_Q_?F)

Here the magnetic field is in the z-direction, V) = 8.¢; + 9,¢,, “"3 = 47Gm;no,

w2 = e*no/mjeo, and m; is the ion mass. Nonlinear Egs. (2), (3) have solutions in
the form of double vortex with typical scale size of the order of Jeans’ critical length.

~VL} [Vie+(Vi+1r] =0 (3)
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It can be shown also that the gravitational collapse is a higher order effect, i.e. it
occurs on a much longer time scale compared to the characteristic time (e.g. period
of rotation) of the vortex.

Three dimensional nonlinear Rossby waves in rotating gravitating systems with a
nonuniform angular velocity wo(z,y)é,, and with a perpendicular equilibrium den-
sity gradient have been studied in Ref. Shukla and Stenflo, 1995). Using standard
fluid equations one can obtain the following equation describing the perturbation of
gravitational potential I':

8 _, 1 9 . 1 ) - w?
BFV_LF-FﬂaJ(F,VLF)-Fm(av_LrXBZ>V_L w—'o

L2 (wg ag)aQP_O @

a—2\9 02) 9.2

Here @ = 2nGngjw? = w?/?wg, J(f,9) = 0:f0y9 — 0:90,f. In the linear limit
the above equation describe linear Rossby waves. In the strongly nonlinear case an
analytical stationary solution of Eq. (4), traveling with a constant velocity u in the
y-direction, for u satisfying certain conditions, can be written in the form:

I' = 2uwgz + Alog?2 [cosh(lsz) +1—1/a? cos(ky)] . (5)

For a? > 1 it represents a vortex street resembling the Kelvin-Stuart cat’s eyes.

Similar solutions may be found numerically in the problem of sclf-generation of
magnetic field (Vranje§ and Jovanovié, 1996). We study electromagnetic perturba-
tions of electrons in an electron-ion plasma with heavy ions making neutralizing
background, and with an electron flow in the basic state. Using the electron mo-
mentum and energy equation together with the Maxwell equations one can find the
following nonlinear equation describing the generation of magnetic field:

((%+so’;—y+e‘z xVB-V) (v2—1)3—¢“'a—§=0. (6)
This equation is derived on condition of a weak time dependence 9, <« wp, (electron
plasma frequency), for z-independent perturbations, and for the plasma flow given
by ¥o(x) = Vi f(x)éy, where we introduced ¢'(2) = f(z). In the linear case Eq. (6)
belongs to the class of equations describing streaming instabilities. In the strongly
nonlinear limit we look for stationary solutions traveling along the y-axis with the
velocity u. Writing 8/0t = —ud/dy, Eq. (6) can be integrated once, and for the flow
profile symmetric around the phase velocity u it is solved numerically. The solutions
are sought in the form:

B(z,y) = Bi(z) + 8B (z) cos(ky), [6Bi(z)| << |Bi(z)|. ()

We found two different nonlinear modes, for even and odd By and 6B;. In the first case
the solution for the magnetic field is a two-dimensional, single vortex chain structure,
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localized along the gradient of the flow (z-axis), and periodic in the perpendicular

direction (y-axis). In the second case it has the form of a double chain structure with
much bigger periodicity length (smaller k) along the y-axis.

In both cases the self-generated magnetic filed yields a significant steepening of
the electron flow profile. A similar situation was observed in the case of a magnetized
plasma (Vranjes, 1998). In a local approach perpendicularly to the flow, double vor-
tices driven by the density and temperature gradients are found. In a nonlocal case
we obtain vortex chains driven by the flow.
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