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Abstract. The reflection of an obliquely incident electromagnetic pulse from a moving
plasma half-space is studied. Using the Lorentz transformations, covariance of Maxwell’s
equations and principle of phase invariance to transform between the rest frame and the
moving frame, analytical formula for the linear reflected waveform shows temporal compres-
sion and pulse amplification at relativistic velocities of interest for generation of ultra-short
laser optical pulses.

1. INTRODUCTION

A transient reflection and transmission of an obliquely incident EM pulse at the steady
(non-moving) plasma-vacuum interface has been solved analytically in a closed form
by Chabris and Bolle 1971, and Stanić and Škorić 1973ab. Recently, generation of
ultra-short (attosecond range - 10−18s) light and relativistic particle bunches gained
importance in various applications (see Mourou et al. 2006). Here, we revisit a general
problem of a linear reflection of a time-dependent EM (laser) pulse from a plasma
half-space moving at the relativistic velocity, see, Stanić and Škorić 1974.

1. 1. FORMULATION

A time-dependent electromagnetic plane wave pulse is incident at the moving cold
plasma-vacuum interface. The incident angle is θi and the plane of incidence is Oxz,
as shown in figure 1. The incident electric field (S- polarization) of the EM pulse in
the time domain, by inverse Fourier transformation, is

Eyi = (1/2π)
∫ +∞

−∞
E0 exp [j (ωit− kir)] dωi

≡ E0δ (t− (x/c) sin θi + (z/c) cos θi) , (1)

where δ (t) is the Dirac’s function and ωi and ki are the angular frequency and the
wavenumber vector in the observer’s rest frame K, respectively. The uniform plasma
half-space is moving with the velocity v, where in two special cases: a) v = exv and
b) v = ezv. The rest frame of the moving plasma is K ′.
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Figure 1: Geometry of the problem.

2. ANALYTICAL THEORY

Making use of the Lorentz transformations, covariance of Maxwell’s equations and
the principle of phase invariance, to transform between the rest (laboratory) frame
and the moving frame (see e.g. Papas 1965, Ch. 7); the incident electric field in the
moving frame K ′, can be represented as

E
′
yi = (1/2π)

∫ +∞

−∞
γ (1− kiv/ωi)E0 exp [j (ωit− kir)] dωi =

= (1/2π)
∫ +∞

−∞
γ (1 + k′iv/ω′i)E′

0 exp [j (ω′it
′ − k′ir

′)] dω′i, (2)

with physical quantites with the ”prime” superscript corresponding to the moving
frame K ′, and where

ω′i = γ (1− kiv/ωi)ωi, γ =
(
1− v2/c2

)−1/2
=

(
1− β2

)−1/2
, (3)

k
′
i = ki − γωiv/c2 + (γ − 1) (kiv)v/v2, and (4)

E′
0 = γ (1− kiv/ωi)E0, E′

01 = γ (1 + k′iv/ω′i)E′
0. (5)

With the exp
(
jω

′
it
′
)

time dependence suppressed, the incident electric field in the
frequency domain in the moving frame is given by

E ′yi = E′
01 exp

(
−jk

′
ir
′)

, (6)

and the frequency domain expression for the reflected field is simply

E ′yR =
1−N

′

1 + N ′E
′
01 exp

(
−jk

′
rr
′)

, (7)

where, the well-known index of refraction for cold plasma at rest in K ′, is

N ′ =
∣∣∣∣1−

(
ω
′
p/ω′ cos θ

′
i

)2
∣∣∣∣
1/2

, ω′i = ω′r = ω′t ≡ ω′.
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REFLECTION OF AN ELECTROMAGNETIC PULSE

The vacuum dispersion relation ω
(′)
i,r = k

(′)
i,rc, is valid in K and K ′ frame.

Using again the Lorentz transformations, covariance of Maxwell’s equations and
the principle of phase invariance to transform back from the moving frame K ′ to the
laboratory frame K, the time domain reflected field becomes

EyR = (1/2π)
∫ +∞

−∞
γ (1 + k′rv/ω′i) E

′
yR exp

(
jω

′
t
′)

dω
′

= γ (1 + k′rv/ω′i)E
′
yR. (8)

The expression for E
′
yR found by the standard method of contour integration as

E
′
yR = −

(
2E′

0/τ
′)

J2

(
a
′
τ
′)

U
(
τ
′)

, (9)

where
τ
′
= t

′ − k
′
rr
′
/ω

′
, a

′
= ω

′
p/ cos θ

′
i, and U

(
τ
′)

, (10)

is the Heaviside unit step function, while J2 (x) is the Bessel’s function of the first
kind of second order. We note that (9) is the Green’s function solution, while a linear
solution to another incident pulse profile is found by a convolution integration.

Further, we discuss two cases of the moving plasma half-space:

• a) v = exv

The reflected field is identical to non-moving plasma case; as normally incident wave
does not ”see” plasma motion in x-direction.

• b) v = ezv

EyR = − (2E0α0/ξ)J2 (α1ξ) U (ξ) , (11)

where
α0 = γ2

(
1 + 2β cos θi + β2

)
, α1 = |ωp/γ (β + cos θi)| , (12)

and
ξ = α0t− (x/c) sin θi − (z/c) γ2

∣∣(1 + β2
)
cos θi + 2β

∣∣ . (13)

3. RESULTS AND DISCUSSION

It is clear that the plasma motion modifies both the amplitude and the oscilla-
tory phase of the reflected field (11); with a departure from the classical Snell’s law
(θi 6= θr). More precisely, (13) gives: tan θr = sin θi/γ2

∣∣(1 + β2
)
cos θi + 2β

∣∣ , which
for large β > 0, predicts θr < θi, i.e. the reflection angle close to normal incidence.
We note that earlier authors, Rattan et al 1973, erroneously performed inverse Fourier
transform over the incident ωi; instead of integrating over the reflected frequency. The
reflected waveforms for EyR, as function of time and the plasma velocity v (v = ezv)
for normal incidence (θi = 0), are plotted in figure 2a. The time delays in terms of the
inverse plasma frequency of the maximum positive and negative reflected amplitude,
as a function of plasma velocity β, are shown in figure 2b. Large compression and
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Figure 2: (a) Reflected EM field in time as a function of the plasma velocity γ. (b)
Time period of the first and second peak in the reflected wave versus plasma velocity.

amplification of the reflected pulse (factor ∼ 2γ) at highly relativistic plasma motion
reveals a remarkable feature and some potential of this linear mechanism for ultra-
short (attosecond) pulse generation by low intensity high-rep-rate femtosecond laser
pulses scattering at counter-propagating relativistic electron beams, see e.g. Nikolić
et al. 2008. For example, a short green laser light pulse (λ ∼ 0.5 microns) reflected
from 5MeV electrons (γ ∼ 10) at critical density gives a main reflected pulse width
of around 60 attoseconds; basically given by the relativistically upshifted plasma fre-
quency which can be high in solid density plasmas.
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