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Q
aber,. wie man sich leicht iiberzeugt, auf der erwihnten An-
pahme beruben.
< Damit bhaben wir die Untersuchung des Meridian-
iustﬁ“}ments abgeschlossen. Die Untersuchung der Winkel-
messung in den zur Meridianebene normalen Ebenen bringt,
wie man sich leicht Giberzeugt, keine neuen Resultate.
Zusammenfassend konnen wir also sagen: der Winkel-
messung liegt die Annahme der euklidischen Kinematik des
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starren Korpers zu Grunde. Die Verwendung optischer Hilfs-
apparate (Fernrohr, Mikroskop usw.) bringt keine neuen
optischen Annahmen mit sich, Die »Starrheit¢ der Instrumente
wird mit Hilfe unserer Annahme 2z und der Unabhingigkeit der
Abbildungsgesetze von der Richtung geprift. Diese letztere
ist zwar noch nicht unmittelbar iiberpriift, kann aber durch
den Ausfall des Michelsonschen Versuches gestiitzt werden.
Wien, 1924 Febr, 15, Fr. Zevner.

Uber eine mdogliche Form fiktiver Doppelsterne.
Es ist gegenwirtig wohl als hochst wahrscheinlich an- !

sunehmen, daf ein Lichtstrahl, der in der Nihe der Oberfliche
eines Sternes vorbeigeht, eine Ablenkung erfihrt. Ist y diese
Ablenkung und y, der Maximumwert an der Oberfliche, so
ist yp=y=o0. Die Grobe des Winkels ist bei der Sonne
yo == 177; es diirften aber wohl Sterne existieren, bei denen
70 gleich mehreren Bogensekunden ist; vielleicht auch noch
mehr. Es sei A4 ein groBer Stern (Gigant), 7" die Erde,
B ein entfernter Stern; die Winkeldistanz zwischen A und B,
von 7' atis gesehen, sei &, und der Winkel zwischen 4 und 7,
von B aus geschen, sei . Es ist dann
y=oa+8.

‘Ist B sehr weit entfernt, so ist anndhernd y = a. Es
kann also & gleich mehreren Bogensekunden sein, und der
Maximumwert von e wire etwa gleich yo. Man sieht den
Stern & von der Erde aus an zwei Stellen: direkt in der
Richtung 78 und auSerdem nahe der Oberfliche von 4,
analog einem Spiegelbild. Haben wir mehrere Sterne 5, C, D,
so wiirden die Spiegelbilder umgekehrt gelegen sein wie in

Petrograd, 1924 Jan. 28.

Von O. Chwolson.

einem gewohnlichen Spiegel, ndmlichin der Reihenfolge D, C, .5,
wenn vort 4 aus gerechnet wird (D wire am néichsten zu A).

Der Stern 4 wiirde als fiktiver Doppelstern erscheinen.
Teleskopisch wire er selbstverstindlich nicht zu trennen.
Sein Spektrum bestinde aus der Ubereinanderlagerung zweier,
vielleicht total verschiedenartiger Spektren. Nach der Inter-
ferenzmethode miifite er als Doppelstern erscheinen. Alle
Sterne, die von der Erde aus gesehen rings um A in der Ent-
fernung y,— A liegen, wiirden von dem Stern A gleichsam
eingefangen werden. Sollte zufillig 745 eine gerade Linie
sein, so wiirde, von der Erde aus gesehen, der Stern A von
einem Ring umgeben erscheinen.

Ob der hier angegebene Fall eines fiktiven Doppelsternes
auch wirklich ‘vorkommt, kann ich nicht beurteilen.

Q. Chwolson.

Antwort auf eine Bemerkung von W. Anderson.

Daf ein FElektronengas einer Substanz mit negativem
Brechungsvermégen optisch #quivalent sein miifite, kann
bei dem heutigen Stand unserer Kenntnisse nicht zweifelhaft
sein, da dasselbe einer Substanz von verschwindend kleiner
Eigenfrequenz fquivalent ist.

Aus der Bewegungsgleichung

X = pd¥fds?

einés Elektrons von der elektrischen Masse ¢ und der pon- |

derabeln Masse u folgt ndmlich fiir einen sinusartig pendelnden
Prozeft von der Frequenz » die Gleichung
X = —(27mv)?px .

Beriicksichtigt man, dafi ex das »Moment« eines schwingenden’

Elektrons ist, so erhilt man fiir die Polarisation p = zex
cines Elektronengases mit z Elektronen pro Volumeinheit

p=—nflu(2n9)]- X
Hieraus folgt, daB die scheinbare Dielektrizititskonstante
D = 1+4mp|X = 1~ nf(rmp v*)
ist. V. ist in diesem Falle der Brechungsexponent, also
jedenfalls kleiner als 1. Es eritbrigt sich bei dieser Sachlage,
auf das Quantitative einzugehen. ‘

Es sei noch bemerkt, daB ein Vergleich des Elektronen-
gases mit einem Metall unstatthaft ist, weil die bei der elemen-
taren Theorie der Metalle zugrundegelegte »Reibungskrafte
bei freien Elektronen fehlt; das Verhalten der letzteren ist
allein durch die Einwirkung des elektrischen Feldes und
durch die Trigheit bedingt- ‘

Berlin, 1924 April 15. A. Einstein.

Zur Bemerkung von.

In his note entitled »Zu Prof. Einsteins Bemerkung
AN 5233¢, W. Anderson makes use of the well-known formula
for the index of refraction of a medium containing both free

W. Anderson AN 5269.

"of an electron gas is greater than unity, and that the conduc-
tivity is large. This assumption seems tobe based onan erroneous
conception of dielectric constant and conductivity. In fact, if Hea-
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DISCUSSION

. LENS-LIEE ACTION OF A STAR BY THE
DEVIATION OF LIGHT IN THE
GRAVITATIONAL FIELD s

‘Some time ago, R. W. Mandl paid me a visit and
asked me fo publish the results of a little caleulation,
which T had made at his request. This note complies
with his wish. 20

The light coming from a star A4 traverses the gravi-
tational field of another star R, whose radins is R,.
Let there be an observer at a distance D from B and
at a distance x, small eompared with I, from the ex-
tended central line AB. According to the general
. theory of relativity, let a, be the deviation of the light
ray passing the star B at a distance B, from its center.

For the sake of simplicity, let us-assume that A5
is large, compared with the distance D of the observer
from the deviating star B. We also neglect the eclipze
(geometrical obscuration) by the star B, which indeed
is megligible in all practieally mpo:r’tant eases. To
permit this, D has to be very large ecompared to the
radius B, of the deviabing star.

It follows from the law of deviation that an observer
situated exactly on the extension of the central line
AB will perceive, instead of a pointlike star 4, a
luminius eircle of the anguia.r ra.dms B arou:ld the

center of B, where
Bo :
ot L 20

Tt should be noted that this angular diameter § does
- not decrease like 1/D, but like 1/\,/17 a3 the distance
D increases.

Of course, there is no hepe of nhsenmg this phe-
 nomenon directly. First, we shall seareely ever ap-
proauh closely enongh to sueh a eentral line. Second,
the angle § will defy the resolving power of our
instruments. For, «, being of the order of magnitude
of one seecond of are, the angle R, /D, nnder which the
deviating star B is seen, is much smaller, Therefore,
the light coming from the luminous eirele can not be
" distingnished by an observer as geometrically different
" from that coming from the star B, but simply will

manifest itself as increased apparent brightness of B.

The same will bappen, if the observer is situated at

& small distance # from the extended central lins AF.
But then the observer will see 4 as two point-like
light-sources, which are deviated from the frue geo-
metrieal position of .4 by the angle 8, approximately.

to the expression

 is a sufficient approximation, sinee

The apparent brightness of 4 will be increased by

| the lens-like action of the gravitational field of B in
. the ratio g.

This g will be considerably larger than
unity only if x is so small that the observed positions

- of 4 and B coineide, within the resolving power of cur

instruments. Smmple geometrie eunsldara.tmns ]e.srl
iy
£ T ER

gzg.ﬁ]
Nite

: i= Vq.qD.Eq.

If we are interested mainly in the case g » 1, the for-

. mula

=—

z 2 .
77 may be neglected.
Ewen in the most favorable cases the length 1 is only
a few light-seconds, and = must be small compared
with this, if an appreciable increase of the apparent
brightness of 4 is to be produced by the lens-like

action of B.
Therefore, there is 1o great. chance of observmg

this phenomenon, even if dazzling by the light of the

much nearer star B is disregarded. This apparent
amplification of g by the lens-like action of the star
B is a most curious effect, not so mueh for its becom-

. ing infinite, with # vanishing, but sinee with increasing
‘distance I of the observer not only does it not decrease,

but even inereases proportionally to \ﬁ?_-“
: ; ArpErr BinsTeErS
INBTITUTE FOR ADVANCED STUDY,
Prixceror, N. J.
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Nebulae as Gravitational Lenses

Einstein recently published! some calculations concern-
ing a suggestion made by R. W. Mandl, namely, that a star
B may act as a “gravitational lens” for light coming from
another star 4 which lies closely enough on the line of sight
behind B. As Einstein remarks the chance to observe this
effect for stars is extremely small.

Last summer Dr. V. K. Zworykin (to whom the same
idea had been suggested by Mr. Mandl) mentioned to me
the possibility of an image formation through the action of
gravitational fields. As a consequence I made some calcula-
tions which show that extragalactic nebulae offer a much
better chance than stars for the observation of gravitational
lens effects.

In the first place some of the massive and more concen-
trated nebulae may be expected to deflect light by as much
as half a minute of arc. In the second place nebulae, in
contradistinction to stars, possess apparent dimensions
which are resolvable to very great distances.

Suppose that a distant globular nebula A4 whose diam-
eter is 2¢ lies at a distance, a, which is great compared with
the distance D of a nearby nebula B which lies exactly
in front of A. The image of A under these circumstances
is a luminous ring whose average apparent radius is
B= (v D)}, where v, is the angle of deflection for light
passing at a distance 7o from B. The apparent width of the
ring is A8=E/a. The apparent total bright of this
luminous ring is g times greater than the brightness of the

direct image of 4. In our special case g=2la/tD, with
1= (yorsD)L. In actual cases the factor ¢ may be as high as

g=100, corresponding to an increase in brightness of five
magnitudes. The surface brightness remains, of course,
unchanged.

The discovery of images of nebulae which are formed
through the gravitational fields of nearby nebulae would
be of considerable intercst for a number of reasons.

(1) Tt would furnish an additional test for the general
theory of relativity.

(2) It would enable us to see nebulae at distances greater
than those ordinarily reached by even the greatest tele-
scopes. Any such extension of the known parts of the uni-
verse promises to throw very welcome new light on a
number of cosmological problems.

(3) The problem of determining nebular masses at
present has arrived at a stalemate. The mass of an average
nebula until recently was thought to be of the order of
My =10 M@, where M is the mass of the sun. This esti-
mate is based on certain deductions drawn from data on
the intrinsic brightness of nebulae as well as their spectro-
graphic rotations. Some time ago, however, I showed?
that a straightforward application of the virial theorem to
the great cluster of nebulae in Coma leads to an average
nebular mass four hundred times greater than the one
mentioned, that is, My'=4X10"M@. This result has
recently been verified by an investigation of the Virgo
cluster.? Observations on the deflection of light around
nebulae may provide the most direct determination of
nebular masses and clear up the above-mentioned
discrepancy.

THE EDITOR

A detailed account of the problems sketched here will
appear in Helvetica Physica Acta.

F. Zwicky
Norman Bridge Laboratory,
Califernia Institute of Technology,
Pasadena, California,
January 14, 1937.

L A. Einstein, Science 84,

, 506 (1936).
+F, Zwicky, Helv. Phys. Acta 6, 124 (1933).
+ Sinclair Smith, Astrophys. J. 83, 23 (1936).

Emergence of Low Energy Protons from Nuclei

In some experiments recently described! the emission of
protons in alpha-particle induced transmutations has been
studied. In several cases the interesting fact was noticed
that protons of relatively low energy were emitted in
considerable numbers. Thus for each of the reactions

Al +He'—Si® +H1,
Pi HetsSH 4 H1,
CIS +HetrA +HY,
Ca®4 HelsSct'+-H1,

a group of protons of maximum range 20 cm or less is found
and the yield is in general large (more than one-third of the
total number of protons emitted). In each case protons of
range 10 cm are observed with no apparent diminution of
the probability of emission. The question arises as to how
these low energy protons get out of the composite nucleus.
In recent experiments in this laboratery the excitation
curve for the emission of neutrons from argon under alpha-
particle bombardment has been plotted and the nuclear
radius found to be 7.3 1072 cm which is in accord with
Bethe's revised radii for the radioactive elements? and may
be taken as a basis for calculation of the nuclear radii of
S0, 5%, A%, Ca*? and Sc#3, Other evidence (e.g., scattering
experiments) indicates, if anything, smaller radii than those
found in this way. In Table I are given the radii so calcu-
lated, together with the heights of the corresponding proton
barriers and the range of a proton just able to surmount
‘them. It will be seen that in every case the experimentally
observed ranges are smaller than necessary to scale the
barrier. It therefore appears that we can draw one of two
significant conclusions from the experimental data. Either
barriers to emerging protons are abnormally low or the com-
posite nucleus coniaining the final product element and the
proton has a finite lifetime sufficiently long to enable the
proton lo leak through the barrier. The latter view, which is
in accordance with Bohr’s conception of transmutation,?

TasLe I.




Constraints on DM objects from GL
(Wambsganss(1993))
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Just after the discovery of the first multiple imaged
quasar QSO 0957+561 A,B by Walsh, Carswell &
Weymann (1979) the idea of microlensing by low
mass stars in heavy halo was suggested by Gott
(1981).

First evidences of quasar microlensing was found
by Irwin et al. (1989).

Now there are a number of known gravitational
lens systems (Claeskens & Surdej 2002; Browne et
al. 2003) and some of them indicate evidences for
microlensing (Wambsganss 2001a).




Notations and expressions

i = D€/ Dy — Dgs®(£).
For Schwarzschild GL

S(§) = 4GME/(c*e?).
If 7 = G then

[aGM  DyDgy,
— K —=2
o 2 Ds

is Einstein — Chwolson radius and

0o = €0/ Dy (7)
is Einstein — Chwolson angle. If we introduce di-
mensionless variables & = 5/50, ¥ = Ds1j/(&oDy) then

§=%—&/z°. (8)

The Eq. (8) has two roots

1 1 1
.
=g(=+,/>4+=
! y(2 4 92)

1 1
|l = |z~ +=2 — =+ —.
o7+ ] =203 +
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The gravitational lens equation near cusps

P. Schneider and A. Weiss

Max-Planck-Institut fiir Astrophysik, Karl-Schwarzschild-Str. 1, W-8046 Garching bei Miinchen, Federal Republic of Germany

Received January 11, accepted February 29, 1992

Abstract. The behaviour of the gravitational lens mapping near
cusps is studied, both analytically and numerically, paying par-
ticular attention to magnification probabilities. We demonstrate
that the three images of a point source inside a cusp satisfy the
relation that the sum of the magnifications of the two images
with the same parity equals, up to a sign, the magnification of
the third image (of opposite parity). This property will then be
used to show that the asymptotic magnification cross-section for
point sources, in the limit y, — <o, derived previously for folds
only, is also valid in the presence of cusps. The next order term of
such an expansion, which is due to sources just outside of cusps,
is derived. We apply these relations to a special gravitational
lens model'and show that these asymptotic relations are indeed
very good approximations for the large-p, cross-sections. For
the study of the magnification of extended sources near cusps,
we generalize the ray-shooting method to allow for very small
sources. The magnification cross-sections for extended sources
are then compared to those for point sources. A magnification
contour plot for extended sources near a cusp is obtained. Since
the largest magnifications of sources occur near cusps, this paper
may directly apply to studies of the amplification bias in source
counts.

Key words: gravitational lensing, Catastrophe Theory

1. Introduction

The gravitational deflection of light, in the approximation of grav-
itational lens theory, can be described by a mapping f : R? — R’
from the lens plane (or a small part of the observer's sky) to the
source plane (or the corresponding part of the sphere of constant
source redshift). In the case of a single geometrically-thin deflec-
tor, this is a gradient mapping (for an introduction to gravita-
tional lens theory, sce Blandford & Narayan 1986, hereafter BN;
Blandford & Kochanek 1987; Schneider, Ehlers & Falco 1992,
hereafter SEF). The behaviour of such a gradient mapping near
critical points, i.e., points where the Jacobian of the lens mapping
vanishes, is investigated and classified by Catastrophe Theory
(e.g. Poston & Steward 1978; Gilmore 1981; for applications in
gravitational lensing, see BN; Kovner 1987a; SEF, Chap.6). In

Send offprint requests to: P. Schneider

a generic lens mapping, the critical points form closed, smooth,
non-intersccting curves (so-called critical curves), and their image
curves under the mapping f are the so-called caustics. They are
also closed curves, but can intersect each other, self-intersect, and
are not necessarily smooth, but can have cusps.

Caustics are an important ingredient in gravitational lens
theory, for several reasons. First, the number of images of a
source changes by £2 if, and only if, the source position changes
across a caustic. Hence, knowing the structure of the caustics
allows a qualitative understanding of the lens mapping, at least
concerning image multiplicities. Also, if one considers families of
lens mapping, Catastrophe Theory allows to predict the param-
eter values of the models at which the caustic structure changes,
thus allowing a classification of parametrized lens models (for
an example, sce Erdl & Schneider 1992). Second, the magnifi-
cation of a source, which is due to the area distortion of the
lens mapping (ie., the inverse of the Jacobian) becomes largest
if the source is near a caustic. In particular, to determine the
probability distribution for very large magnification of sources,
one has to consider the lens mapping near caustics only.

A generic lens mapping has only two types of singularities,
folds and cusps. At fold points, the caustic is smooth. A source
on the “positive side” of a fold has two images close to, and on
opposite sides of the corresponding critical curve. By approaching
the caustic, the two critical images move closer together, thereby
brightening. At the point where the source crosses the caustic, the
two images attain (formally) infinite magnification (in practice,
a finite source size leads to finite values of the magnification,
but if we had a sufficiently compact source, wave optics effects
would limit the magnification; see Chap.7 of SEF and references
therein), merge and disappear thereafter. The magnification of
a point source scales like 1/,/y, where y is the distance of the
source from the caustic. Considering folds only, the magnification
probability of point sources in the limit of high magnifications,
jt — o0, behaves like p 2, and the constant of proportionality can
be derived as a particular integral over the critical curves of the
lens mapping (see BN, SEF, and Sect. 2.4 below).

The derivation of this probability distribution neglects the
fact that cusps show a different behaviour. The standard argu-
ment implicitly used is that “cusps form a set of measure zero in
the set of all critical points”; one therefore expects that cusps do
neither change the shape, nor the amplitude of the p(u) oc p=?
law. Cusps are isolated points, connected by folds. A source close

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System
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be the following: select a region in the source plane such that all
points with magnification > yy lie inside the selected region (this
region, in the case of the Chang-Refsdal lens, is preferentially
chosen as a rectangle). Then, distribute N point sources inside
this region (with area /), calculate their magnifications from
the lens equation, assign to each point a differential cross-section
do = o/ /N and add up these differential cross-sections. If the
N points are distributed randomly, we can easily estimate the
number of points required for a given accuracy. If o/ ~ 4, and
a(10%) ~ 4 x 107° (typical values for the Chang-Refsdal lens),
then Niggn ~ 107°N points will have magnification > 10°. If the
cross-section is to be determined to within an accuracy of 1073,
we would need N = 10'? points — a hopeless task. The situation
is slightly better if the points are not distributed randomly, but
on a regular grid. Nevertheless, even then the computing time
would be much too large for calculating accurate cross-sections
for large p. .

To overcome these difficulties, we use a hierarchical method,
based on the idea ‘to use the computing time for interesting source
positions’. For example, we want to distribute a higher density
of points in regions where the magnification is large. Ideally,
the number of source positions should be the same for each
logarithmic bin of magnification, so that the statistical accuracy
is smooth over the whole y-interval considered. We now describe
such a method applicable to point sources; a similar method
has been used for extended sources, as described in the next
subsection.

Consider the area ./ to be divided up into N squares. If
the magnification at the center of a square is u,, we assign
to this square a differential cross-section da(u,) = o/ /N. If
this particular square is “interesting’ (we will specify this below),
we can divide it into four subsquares and again calculate the
magnification at the center of each subsquare (the corresponding
differential cross-section then is ./ /(4N)). If one or more of these
subsquares appears again ‘interesting’, further divisions can be
made; we can go down this hierarchy as far as desired.

Fig. 5. Magnification contours around
a gencric cusp. The source radius cho-
sen for this plot was 510, The con-
tour levels range from 3 to 10 in steps
of one, and then to 80 (central con-
tour) in steps of 5.

Squares are ‘interesting’ if they have high magnification, if
the gradient across the square is large, or if a caustic crosses the
square (these conditions are not mutually exclusive, of course).
‘We have defined numerical criteria according to the preceding
prescription of ‘interesting’; for example, if the magnification of a
square at hierarchy level n is larger than p,, the square is further
divided (it was found that .y = p, 10°7 is a good splitting
criterium). Further, if the magnification factors at the corners of
a square differed by more than 0.5, subdivision was applied. For
the calculations shown in this paper, 14 hierarchy levels were
used.

The solutions of the lens equation, and thus the point source
magnification, can be calculated for the Chang-Refsdal lens, using
the equations of Sect.3. For each source position, one has to
solve the fourth-order equation (3.3b), insert the real solutions
into (3.3a), and calculate the magnification of each individual
image. In connection with the hierarchical splitting of the source
plane as described above, we have implemented an efficient and
reliable method to solve Eq. (3.3a). This method will be described
next; however, another method of solving the lens equation, to
be described later, turned out to be superior in the situation
considered here.

The Chang-Refsdal-cquation in the form of Eq.(3.3b) can
in principle be solved by any reasonable root-finder for poly-
nomials or other well-behaved functions. Indecd, some of the
root-solvers (e.g. from Press et al, 1986) worked well for most
of the tested source positions, but with no exception all failed
for those being close to cusps. The reason lies in the fact that at
cusps a terrace point in the fourth-order polynomial f(x) (given
by (3.3b)) develops into a pair of extrema, or, in other words,
a single root changes into three. All tested standard root-solvers
gave the wrong number of roots of f(u) on either side of the
cusp! Numerically, a root cannot be found with an accuracy
higher than =~ 10~* for coefficients of (3.3b) of the order of one
by propagation of the machine inaccuracy into the powers of u.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System
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Abstract. On the base of the gravitational lens equation ob-
tained by Schneider & Weiss the magnification of images near
a cusp is investigated. Using the symmetrical polynomials on
the roots of the polynomial of the third degree we slightly gener-
alize the Schneider & Weiss statement on the magnification near
different solutions of the gravitational lens equation. The ana-
Iytical expressions for magnifications of different images near
the cusp are presented.

Key words: gravitational lensing

1. Introduction

Itis well known that the mapping of two-dimensional surfaces
intoa plane gives only two types of stable singularities: folds and
cusps (pleats). There are also similar singularities of caustics in
gravitational lens optics. Schneider & Weiss (1986; 1992) stud-
ied the gravitational lens mapping near the cusps. Mandzhos
(1993) investigated the mutual coherence by solving analyti-
cally the gravitational lens equation near the cusp. In turn, we
study the magnification near the cusp and obtain a useful ana-
Iytical expression for it.

2. Basic equations

We recall the basic equations from Schneider & Weiss (1992)
before considering their gravitational lens equation near the
cusp. As is shown in Schneider, Ehlers & Falco (1992), hereafter
SEF, the gravitational lens equation may be written in the fol-
lowing form: let the distance between an observer and a source
be D, the distance between an observer and the gravitational
lens be Dy , and Dy, be the distance between the gravitational
lens and a source. If we suppose a small angle of deflection then
we have the following simple expression for the lens equation

(SEF)

1N =Dy &Da+ Dys B(E),
Send offprint requests to: A.F. Zakharov

where the vectors 7, £ define the coordinates in source plane
and in the lens plane respectively (SEF),

B&)=4G/c [ p (R)(€ - R) /| € — R dXdy,

where R={X,Y} is the point vector in the lens plane, p(R)
is the surface mass density of the gravitational lens. We intro-
duce the following variables (SEF)

x =§&/Ry, y=D,n/(RoDa),

where Ry = 21',,.D¢.D¢,D, is the Einstein - Chwolson ra-
dius (see Historical Remarks in SEF ). We also introduce the
following notation for the scaled (SEF) angle

a = f DaggDa/(DyRo).

Inthe modelling of gravitational lenses, the surface mass density
is normalized with the critical surface mass density (Wamsganss
1990)

_ D,
Per = 4xGDyDas’

For typical lensing situations the critical surface mass density
is of the order of per = 10* Mgpe™? (Wamsganss 1990). There-
fore, if we define the scaled surface mass density by the follow-
ing expression (SEF)

7 = p/per,
then we have the expression for the angle a
a(x) = [o@)e —2')/|z — 2'|* .

As Schneider (1985) showed, we may introduce the scalar po-
tential 3, such, that

a(x)= V) (x),
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If we introduce (as in SEF)

b, y) =(x —y)y*/2 —P(x),

we can write the lens equation in the form (Schneider 1985)
v¢’ (x, 'y) =0.

It is easy to see that mapping x +— y is a Lagrange mapping
(Arnold 1979), since that is gradient mapping (Arnold 1983).
Really, if we consider the function

S=g® J3 i,
then

y=VS.

Singularities of Lagrange’s mappings are described in
Arnold’s paper (1972), and in Arnold’s review (1983), and their
bifurcations are described in Arnold’s paper (1976).

Equation (1) defined the mapping of points on the lens plane
into points on the source plane. Using the Jacobian matrix we
define the local mapping (SEF):

Sy=Adx,
A (81;‘1/53?1 ayl/aﬁ-‘z) @ (1 —Yn —Ynz ) @
Aya/Ox) BuafBxs —y 1= )’
where
&y
Py = M(Z,J =1,2). 3)

Let us consider lenses which are systems of point masses. Out-
sides the points where the masses are located, we have the fol-
lowing equality ( SEF)

W = =11, )

since the potential obeys the Laplace equation.
The magnification of an image at x is

pulxy=1/det A (x),

(where the mapping is not one-to-one ). The set is formed by
so-called critical curves (SEF).

Since det A('?)) = 0 (at points on the critical curve), it is
possible to find coordinates with ¢y # 0,012 = ¢22 = 0. As
shown in Schneider & Weiss (1992), the lens equation near the
cusp can be represented as

= ez + bm 2
¥ = cxy 3 27
Y2 = briazs +axs®, (3)

where a = %qbggzg, b=¢rm,c=¢andec#0,b#0,2ac—b> #
0. It was shown in SEF that additional terms do not affect the
local properties of the mapping. It is possible to see that by the
direct comparison of terms (for example the term with ¢;;2 is
smaller than the term with ¢;,) or using Newton’s polygon or
Bruno’s truncating rules (see for example Bruno 1989). Similar
to Schneider & Weiss (1992), we introduce the notations

T [
Zr=z#, T2=Z, 0= yi/b, = EY (®)

then we have

= &1+ L2 -

Y = &y 2-?52,

@2 = .'3‘|:AE2+S..'?‘.%,

where s = ac/b®. We also introduce S = | — 2s, i =
2451/35, @2 = §2/S; then we have (Schneider & Weiss 1992)
A 35 1.

ry = '2_’!/1 - 57‘%7 @)
23 — 3@+ 277 = 0. (8)

3. Statement on the magnifications of images near cusps
‘We recall that (Schneider & Weiss 1992)

A = (det A)~',
detA =

f=b"p, ©)
b*det A = b2[2) + (35 — 1)E3). (10)
Consider the magnifications for different images of one point

inside the cusp. We show below that the following equality is
valid for all sources inside the cusp
A+ a® 4 p® =0 (1)

It is clear from Eq.(11) that we have the statement of Schneider
& Weiss (1992) that

!ﬁ(!)lzlﬁ(Z)_l_‘a(Z)l. (12)
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Tt should be mentioned that Eq. (11) follows from Schneider and
Weiss Eq.(2.3) (Eq. (12) of our paper) plus their comment on the
parities after their Eq.(2.33b). We use the following expression
for magnifications

) 1 )
() (S S 13
" 39+ (3s - DEPYR o

or using Eq.(7)

(@) — 2 i

Sl = @)
Therefore it is necessary (o prove that
el Lo, b
R R e

or that

37 — 2[5 + GEY + P+
H@EPEP)? + @20 + PP = 0.
Vieta’s theorem applied to Eq.(8) yields
2 + 2 = 0,
#0280 + 2020 + 2P0 = 3.
If we express the symmetric power polynomials in terms of
symmetric elementary polynomials we have
@+ @) + @Y = 6, a7
@ED2PP + GV + (a‘:&”i&”)’ = 932, (18)
Thus we obtain (16). Similarly we have
PR IRp— 19
SY R — 33)
=35
(3875 — 5)
Therefore we get an equation of third degree for the magnifi-
cation of different images of a point inside the cusp

m= ﬂ(llﬂﬂ) +ﬂ(l)£‘(3) + ﬁ(ﬁnﬂ) - (20)

B+ =0, @n

where fi = 2/5,f1 = pi(38)", 41 = (38’ I i} > 7 then
the discriminant for the pure cubic equation

L Ay i
D= (ﬂ) n (q_l) .

3 2 @ —n»
is negative and we have three solutions of the Eq.(21) (see for
example, Bronstein & Semendjajew 1980). Namely, we have

0.06

-0.06
-0.05 ~0.00

Fig. 1. Magnification contours around a cusp for the sum of abso-
lute values of magnifications of all images. The contour levels are
1025, ~1<i< 14

for a point inside the cusp region

e [ [7-5 I
cos —3—_

24

and we have only one solution for a point outside the cusp region

1}\/ -7 +.?72+’§% - — i
ﬁcu>=Tﬂ (25)
1

Itis possible to calculate the magnifications of the images from

the direct solution of the gravitational lens equation near a cusp.
Namely, we solve Eq.(8) and use Eqs.(7),(9),(10). After that we
also obtain the expressions for magnifications.

4. Discussion

In Fig. 1 we present the contours for the sum of absolute values
of magnifications of images near the cusp. Note that the alge-
braic sum of the values is equal to zero and that there are three
real solutions of the gravitational lens equation in the cusp re-
gion. The contours are plotted by using expressions (22-25). Itis
possible to compare Fig. 1 with the similar figure from Schnei-
der & Weiss (1992) that was obtained using the ray - shooting
method (see, for example, Wamsganss 1990). Figure 1 shows
clearly the cusp type singularity.
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If we introduce 6 := £/Dy, 8 = 77/ Ds then the mag-
nification of GL mapping is

¢ 28 9y

= ‘det— (11)

= |de
‘ ox

P = awg

(—Jr%yzﬂ)- 12)
y

y? +2
y(y2 + N

thus piotal — 1/y (for y — 0) and piota — 14+ 1/y
(for y — 00).

pt =

1
4

Therefore,

Btotal = H4 + p— = (13)

4

If M ~ Mg and Dg ~ 10 kpc then

1/2 1/2
8o = 0.902mas (ﬂ) (10 kpc) (1 - &) :
Mo D, Ds

and angular velocity
. do 10 k
b= gl B L [TOKBGIHES .,
dt 200 km/s Dy, yr
Therefore a typical duration is

1/2 1/2
t0=9—.°=.214 M Da x  (15)
0 Mg 10 kpc

1/2
x (1 - %j) (200 :m/ s) yr.  (16)
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EROS collaboration (astro-ph/0011375)

Target: LMC & SMC

Time of observations: 3 years

Number of stars (10°): 25

Number of candidates: 6 (1 (EROS-I); 4 (LMC),
1 (SMC) + 1 binary microlens in SMC). If the halo
is formed by Machos with M ~ Mg, EROS could
detect ~ 30 events.

Durations of events (days): 24 — 44

Probabilities:
P(m € [1071,10]|Mo&f > 0.4) < 0.05




Upper limit on the contribution of
compact objects to the galactic halo
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Planet discovery with ML with
the lowest mass

(J.-P. Beaulieu et al. Nature,
2006)



Planet discovery with ML with
the lowest mass in 2006 (now
people find a planet with a mass

about 2 Earth masses, see Mayor
et al.)

(J.-P. Beaulieu et al. Nature,
2006)
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Figure 1 : The observed light curve of the OGLE-2005-BLG-390 microlensing
event and best fit model plotted as a function of time. The data set consists of
650 data points from PLANET Danish (ESO La Silla, red points), PLANET Perth
(blue), PLANET Canopus (Hobart, cyan), RoboNet Faulkes North (Hawaii,
green), OGLE (Las Campanas, black), MOA (Mt John Observatory, brown).
This photometric monitoring was done in the | band (with the exception of
Faulkes R band data and MOA custom red passband) and real-time data
reduction was performed with the different OGLE, PLANET and MOA data
reduction pipelines. Danish and Perth data were finally reduced by the image
subtraction technique“3 with the OGLE pipeline. The top left inset shows the
OGLE light curve extending over the previous 4 years, whereas the top right
one shows a zoom of the planetary deviation, covering a time interval of 1.5
days. The solid curve is the best binary lens model described in the text with a
planet-to-star mass ratio of g = 7.6 + 0.7 x 10°, and a projected separation d =
1.610 £ 0.008 Re (where Rg is the Einstein ring radius). The dashed grey curve
is the best binary source model that is rejected by the data, while the dashed
orange line is the best single lens model.
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Figure 2 : Bayesian probability densities for the properties of the planet and its
host star. The individual panels show the masses of the lens star and its planet
(a), their distance from the observer (b), the three-dimensional separation or
semi-major axis of an assumed circular planetary orbit (c) and the orbital period
of the planet (d). The bold, curved line in each panel is the cumulative
distribution, with the percentiles listed on the right. The dashed vertical lines
indicate the medians, and the shading indicates the central 68.3% confidence
intervals, while dots and arrows on the abscissa mark the expectation value and
standard deviation. All estimates follow from a Bayesian analysis assuming a
standard model for the disk and bulge population of the Milky Way and the
stellar mass function of ref. [23], and a prior for the source distance Ds=1.05

+0.25 Rec (where Rge= 7.62 + 0.32 kpc for the Galactic Centre distance). The
+5.

medians of these distributions yield a 5.537 Earth mass planetary companion
at a separation of 2.6:j2AU from a 0.22:371M, Galactic Bulge M-dwarf at a
distance of 6.6 + 1.0 kpc from the Sun. The median planetary period is 9%
years. The logarithmic means of these probability distributions (which obey
Kepler's third law) are a separation of 2.9 AU, a period of 10.4 years, and
masses of 0.22M; and 5.5M. for the star and planet, respectively. In each plot,
the independent variable for the probability density is listed within square
brackets. The distribution of planet-star mass ratio was taken to be independent
of the stellar mass, and a uniform prior was assumed for the planet-star
separation distribution.




0.1
semi—major axis (AU)

Fig. 16— The known extrasolar planets are plotted as a function of mass vs. semi-major axis,
along with the predicted sensitivity curves for a number of methods. The microlensing planets are
indicated by dark red spots with error bars, and the large red spot with a white dot in the center is
MOA-2007-BLG-192Lb. The blue dots indicate the planets first detected via transits, and the black
bars with upward pointing error bars are the radial velocity planet detections. (The upward error
bars indicate the 1-o sini uncertainty.) The gold, cyan, and light green shaded regions indicated
the expected sensitivity of the radial velocity programs and the Kepler and SIM space missions.
The dark and light red curves indicate the predicted lower sensitivity limits for a ground based and
space-based (Bennett & Rhie 2002) microlensing planet search program, respectively. The Solar
System’s planets are indicated with black letters.




The POINT-AGAPE collaboration

(Pixels Observation at INT) (Andromeda Galaxy Amplified Pixel Experiment)

ARI — Liverpool, [oA — Cambridge, ITP — Zurich, OMP — Toulouse, Oxford University
PCC-College de France — Paris, QWM — London, Universite Bretagne-sud — Vannes
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Abstract. Pixel lensing is the gravitational microlensing of light from unresolved stars contributing to the luminosity flux
collected by a single pixel. A star must be sufficiently magnified, that is, the lens impact parameter must be less than a threshold
value uy if the excess photon flux in a pixel s to be detected over the background. Assuming the parameters of the Isaac
Newton Telescope and typical observing conditions, we present maps in the sky plane towards M 31 of threshold impact
parameter, optical depth, event number and event time scale, analyzing in particular how these quantities depend on uy in
pixel lensing searches. We use an analytical approach consisting of averaging on uy and the star column density the optical
depth, microlensing rate and event duration time scale. An overall decrease in the expected optical depth and event number
with respect to the classical microlensing results s found, particularly towards the high luminosity M 31 inner regions. As
expected, pixel lensing events towards the mner region of M 31 are mostly due to self-lensing, while in the outer region dark
events dominate even for a 20% MACHO halo fraction. We also find a far-disk/near-disk asymmeltry in the expected event
number, smaller than that found by Kerins (2004). Both for self and dark lensing events, the pixel lensing time scale we obtain
1s =1-7 days, dark events lasting roughly twice as long as self-lensing events. The shortest events are found 1o occur towards
the M 31 South Semisphere. We also note that the pixel lensing results depend on (ur) and (u) values and ultimately on the

observing conditions and telescope capabilities.

Key words. gravitational lensing — Galaxy: halo — cosmology: dark matter — galaxies: individual: M 31

~ methods: observational

1. Introduction

Pixel lensing surveys towards M 31 (Crotts 1992; Baillon et al.
1993) can give valuable information to probe the nature of
MACHOSs (Massive Astrophysical Compact Halo Objects) dis-
covered in microlensing experiments towards the LMC and
SMC (Large and Small Magellanic Clouds) (Alcock et al.
1993; Aubourg et al. 1993) and also address the question of
the fraction of halo dark matter in the form of MACHOs in
spiral galaxies (Alcock et al. 2000).

‘This may be possible due to both the increase in the num-
ber of expected events and because the M 31 disk is highly in-
clined with respect to the line of sight and so microlensing by
MACHOs distributed in a roughly spherical M 31 halo give rise
to an unambiguous signature; an excess of events on the far side
of the M 31 disk relative to the near side (Crotts 1992).

Moreover, M 31 surveys probe the MACHO distribution in
adifferent direction to the LMC and SMC and observations are
made from the North Earth hemisphere, probing the entire halo
extension.

The Pixel lensing technique studies the gravitational mi-
crolensing of unresolved stars (Ansari et al. 1997). In a dense
field of stars, many of them contribute to each pixel. However,
if one unresolved star is sufficiently magnified, the increase of
the total flux will be large enough to be detected. Therefore,
instead of monitoring individual stars as in classical microlens-
ing, one follows the luminosity intensity of each pixel in the
image. When a significative (above the background and the
pixel noise) photon number excess repeatedly occurs, it is at-
tributed to an ongoing microlensing event if the pixel luminos-
ity curve follows (as a function of time) a Paczynski like curve
(Paczynski 1996).

Clearly, variable stars could mimic a microlensing curve.
These events can be recognized by performing observations in
several spectral bands and monitoring the signal from the same
pixel for several observing seasons to identify the source.

Two  collaborations, MEGA  (preceded by the
VATT/Columbia survey) and AGAPE have produced a
number of microlensing event candidates, which show a rise
in pixel luminosity in M 31 (Crotts & Tomaney 1996; Ansari
etal. 1999; Auriere et al. 2001; Calchi Novati et al. 2002).
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Tnstantaneous pixel kensing event <IE > maps
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Fig. 5. In panel a), the instantaneous pixel lensing event number density ({Ey(x. )} maps (events per arcmin” ) towards M 31 are given for self,
dark and total lensing. In panel b) maps of pixel lensing event rate {E,(x. y)) (events per year and per arcmin®) are given, in the same cases.

expected total number of events detectable by monitoring for |
year the 100 x 70 arcmin? region oriented along the major axis
of M 31 (events within 8 arcmin from the center are excluded).
The first four lines refer to the models considered in Table 1 and
to the parameters in the third row of Table 2. As one can see,
the obtained results for the Reference model are intermediate
with respect to those for the other more extreme models.

In the last row of Table 3, for the Reference model we show
how the expected event number changes considering a differ-
ent value of (ur)y = 1.44 % 1072 (see 5th row in Table 2). As
expected, one can verify that roughly the event number scales
as (ur g

Similar results have been obtained in previous simulations
(see, e.g. Kerins 2004, and references therein). We also note
that our numerical results scale with the fraction of halo dark
matter in form of MACHOs and with the MACHO mass by a
factor (faactio/0.2) V0.5 Mo/m.

In Table 4 we give the total event number () for different
lens populations (bulge, disk and halo) located in M 31. As one
can see, the ratio dark/total events depends on the considered
model, varying from 0.07 (for the massive disk model) to 0.40
for the massive halo model.

To study the far-disk/near-disk asymmetry, in the last three
columns of Table 4 we give results for the South/North M 31
Semispheres and in brackets their ratio. For the Reference
model, we find that self-lensing events are roughly symmetric
(the same is true for lenses located in the MW disk and halo, not
given in the table), while events due to lenses in M 31 halo are
asymmetrically distributed with a ratio of about 2. The asym-
metry is particularly evident (in the last column of the table)
for sources located in the disk.

In Table 5 the instantaneous total number of events {1Ep)
within the considered M 31 region is given. The first four rows
refer to the parameter values {(my) = 0.31 Mg, {mq) = 0.53 Mo,
fvacko = 0.2 and ("1'2)' ~ 9.56 x 10~ (used throughout the
paper). For comparison with the results obtained by Kerins
(2004), in the last four rows of Table 5 we present our re-
sults for (my) = 0.5 Mg, (mg) = 0.5 Mo, fuacuo = 1 and
(u?)p = 1.17 x 107, The asymmetry ratio we obtain is always
rather smaller than that quoted by Kerins (2004).

As it has been mentioned by several authors, in order to
discriminate between self and dark lensing events, it is impor-
tant to analyze the event duration. Indeed self-lensing events
are expected to have, on average, shorter duration with respect
to events due to halo MACHOs.
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Fig. 6. In panel a), mean classical event duration time {#.(x. )} (in days) maps towards M 31 are given for self, dark and total lensing. In panel

b) for pixel lensing, maps of (r,(x. y)) are given, in the same cases.
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Fig.7. The projected (along the x axis) mean event number (E,(y))x
is given as a function of the coordinate y for the Reference model.
The dashed line refers to dark lensing events by MACHOs in M 31
and MW halos while the solid line is for self-lensing events by stars
in M 31 bulge and disk.

6.4. Pixel lensing event time scale

Maps of mean event duration time scale in classical and pixel
lensing are shown in Figs. 6a and 6b.

Here we use the probability, for each location of sources
and lenses given in Eq. (26), of obtaining event duration maps
for self and dark microlensing events.

As expected, short duration events are mainly distributed
towards the inner regions of the galaxy and this occurs for both
{re(x, y)y and {#, (v, y)). The main effect of (ur(x, i)y 1s to de-
crease the event time scale, in particular towards the inner re-
gions of M 31, giving a larger number of short duration events
with respect to expectations based on {f.(x, y)) calculations.

Both for self and dark events the pixel lensing time scale
we obtain is =1-7 days, in agreement with results in Kerins
(2004), but much shorter with respect to the duration of the
events observed by the MEGA Collaboration (de Jong ct al.
2004). This is most likely due to the fact that current experi-
ments may not detect events shorter than a few days.

However, the pixel lensing time scale values depend on
{ur(x, y))p and ultimately on the observational conditions and
the adopted analysis procedure. Indeed from Table 2 one can
see that the {ur(x, y))y value may be casily doubled, changing
the adopted parameters and therefore giving longer events.

In Fig. 8 the pixel lensing event duration {#,(y)) averaged
along the x direction is given as a function of the y coordi-
nate. The dashed line refers to dark lensing events by MACHOs
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Hint of planet outside our galaxy
By Jason Palmer
Science and technology reporter, BBC News

Astronomers believe they have seen hints of the first planet to be
spotted outside of our galaxy.

Situated 1n the Andromeda galaxy, the planet appears to be about six
times the mass of Jupiter.

The method hinges on gravitational lensing, whereby a nearer object can
bend the light of a distant star when the two align with an observer.

The results will be published 1n Monthly Notices of the Royal
Astronomical Society (MNRAS).

The team, made up of researchers from the National Institute of Nuclear
Physics (INFN) in Italy and collaborators in Switzerland, Spain, and
Russia, exploited a type of gravitational lensing called microlensing.
The effect of large, massive objects between an observer and a distant
planet or star can cause distortion or multiple images as the



AP/NASA
First Planet in Another Galaxy Possibly Found

Friday, June 12, 2009

FOX NEWS

The Andromeda galaxy in a NASA composite image.
Astronomers may have found the first planet in another galaxy,
according to New Scientist magazine.



Planet : PA-99-N2 b

THE PLANET

Basic data :

Name|PA-99-N2 b

Discovered in|2009

M.sin i|6.34 M,

Update|16/06/09

http://exoplanet.eu/planet.php?p1=PA-99-N2&p2=b&showPubli=yes&sortByDate


http://exoplanet.eu/ref-data.php?value=6800

Remarks :

Reanalysis of data by An et al 2004
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Figure 1. Normalised distributions of R4, for detectable pixel-lensing events with telescopes having different sizes D =
1.5, 2.5, 4, 8§ m.
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Figure 2. Normalized distributions of ¢;,o (the duration of a microlensing event without planet) for events with x2 > 4 and
Ngood > 3 (solid lines) and for simulated events (dashed lines). Here we take D = 8 m telescope parameters.
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Figure 3. Normalized distributions of R4, for events with x,?, >4 and Ngpoq > 3, assuming a telescope diameter D = 8 m.
Events with p/ug > 1 (solid line) and p/up < 1 (dashed line) are shown.




Table 2. Parameters of events shown in Figs. 4 - 8. We also give in the last two columns the sum of residuals x» and the
maximum value of the mean (with respect to the source area X) planetary signal < € >maz-

P/UO Uuo dP/RE' Mp 8 Rg tg Riax t1/2 Xr Xr mawx < € Pmaxzx
(Mg) (deg) (AU) (day) (mag) (day)
#1 2.89 9.47 x 1073 0.90 1525 341.8 2.2 16.1 20.2 0.5 194 730 642
#2 1.18 2.63 x 102 0.68 265 104.8 2.8 h2.1 21.1 4.0 43 980 249
#3 0.04 3.74 x 107! 1.17 0.3 298.0 3.2 23.7 24.1 18.7 9 77 381
#4 0.12 3.56 x 101 2.25 71 190.3 2.3 18.7 23.5 16.5 13 79 566

#5 0.08 1.62x 107! 1.32 1278  336.0 3.9 28.4 23.8 13.3 37 153 1323
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Figure 4. Event of the I class #1 (see Table 2). The upper panel shows the simulated light curve and the corresponding best
fit model (a Paczynski light curve modified for finite source effects). The lower panel gives the difference.
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Figure 5. The same as in Fig. 4 for the I class event #2 (see Table 2).
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Figure 6. The same as in Fig. 4 for the second class event #3 (see Table 2).
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Figure 7. The same as in Fig. 4 for the second class event #4 (see Table 2).
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Figure 8. The same as in Fig. 4 for the second class event #5 (see Table 2).




0.2r
0.175+
0.15¢
0.125+
0.1
0.075+ E
0.05 i

0.025¢

30 4.0 ' 50“- -60- )
RS distribution

Figure 7. The distribution of the source radius for first (solid line) and second (dashed line) class of events.
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Figure 8. The distribution of the planet mass Mp for the second class of events is shown (solid line). For comparison, the Mp
distribution of the generated events is also shown (dashed line). Tere we take N;,, = 12 day~! and D = 8 m.




120

100

th II\|ITI ‘\I\‘I\\|I II}II\|\\

'
—_—

Log(d,/AU) distribution

b1\\I\“I\WITIW\IH‘IHI‘IH\|H\IM11q

-
) 4 -
'
I I N U SR BT 1T L TT -1 1o Sy R T

Log(d,/Ry) distribution

'
—_—

Figure 9. Upper panel: for the second class of events, distributions of the star-to-planet separation dp (in AU units) for all
(solid line) and small planetary mass (Mp < 20 Mg, dashed line). Lower panel: distributions of s = dp/Rg for events as
before.
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Figure 10. Time duration ATp distributions for all (solid line) and low {dashed line) planetary masses, for the second
(p/ugp < 1) class of events.
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Figure 11. Histograms for the differences (¢; —to) (left panels) and (ty —to) (right panels) for first (upper panels) and second
(lower panels) classes of events. Initial and final instants for the start and the end of significant (at least 3 points over 30)
deviations in light curves are denoted by ¢; and ty, while ¢o is the instant of maximum on the light curve for a lens without
planet.




Table 1. First class pixel-lensing events (x2 > 4, Ngooq > 3 and p/uo > 1). Mean values of lensing parameters: maximum
flux deviation < Rpae >, full-width half-maximum event duration < t;/, >, Einstein radius < Rg >, planet-to-star distance
< dp > and planet mass < Mp >.

Los. < Rs> < Rmaz> <lyyj2> <Rg> <dp> <Mp> < ATp >

Rg (mag) (day) (AT) (AU) (Mg) (day)
A 26.0 20.01 2.26 2.35 6.34 197 4.3
B 25.2 19.97 2.43 2.73 6.68 148 6.3
C 27.9 19.82 3.14 3.06 6.29 187 Al
D 24.5 20.18 3.14 2.08 5.99 205 6.3

Table 2. As in Table 1 for the second class pixel-lensing events (x2 > 4, Ngooda > 3 and p/ug < 1).

Los. < Rs> < BRmaxz> <t1y2> <Rg> <dp> <Mp> <ATp>

Re (mag) (day) (AT) (AU) (Mg) (day)
A 14.9 23.31 11.46 2.60 4.9 1024 6.8
B 12.9 22.89 13.12 3.32 4.57 905 9.0
C 14.5 22.94 14.56 3.66 5.68 863 1.3
D 15.1 23.20 13.75 2.50 377 929 1.5




Table 3. Probability to detect pixel-lensing events (second column) and to find planetary features (y2 > 4 and Nyood > 3)
for first (p/ug > 1, third column) and second (p/uo < 1, fourth column) classes of events for telescopes of different diameters,
assuming Ny, = 12 day~! and g, = 30 min.

D Py P

(m) (%) (%)

1.5 271 01
25 62 0.8
4 7% 15
8§ 100 25
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Figure 11. Scatter plot of the planet mass (in unit of Earth mass) vs planet distance (in Astronomical Units).
The solid thick line delimits the region (upper and left) of planet detection accessible by the radial velocities,
transit and direct imaging methods. The eight small boxes are the planets detected by the microlensing
technique. Starting from a sample of 40,000 detectable pixel-lensing events (D = 8 m), 630 selected events
(indicated by black dots) with xr > 4, Ngooq > 3 and {(€)max > 0.1 show planetary features and among these 48
events have Mp < 20 Mg.
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Figure 16. The upper panel shows the simulated light curve of an event with the parameters of the best fit finite source
model for the PA-99-N2 event (An et al. 2004). In particular, dp = 0.68 Rg, g = 7.59 x 102 (corresponding to a planet mass
Mp = 2670 Mg for a lens mass of M; = 1 Mg), uo = 0.0386, tx = 124.3 day, v1 = 340 km s~ ! and 0 = 26.4 deg. We take the
source magnitude M, = —2.0, and a source radius of Rs = 14 Ry (the average radius for a second class event), consistently
with the above mentioned analysis. The lower panel gives the difference with respect to the Paczynski light curve (modified for
finite source effects) for the same parameters. Here we use the INT telescope parameters and N;,, = 12 day L.
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Figure 13. The upper plot shows the simulated light curve of an event with the parameters of the best fit finite source model
for the PA-99-N2 event (An et al. 2004). In particular, dp = 0.68 Rg, ¢ = 7.59 x 10~ (corresponding to a planet mass
Mp = 2670 Mg for a lens mass of M; = 1 Mg), ug = 0.0386, ty = 124.3 day, v = 340 km s—! and 0 = 26.4 deg. We take the
source magnitude M, = —2.0, and a source radius of R; = 14 Ry (the average radius for a second class event), consistently
with the above mentioned analysis. The central plot gives the residuals with respect to the Paczynski light curve (modified
for finite source effects) for the same parameters and the lowest plot gives the parameter D. Here we use the INT telescope
parameters and N;,, = 12 day—!.
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