Interatomic Potentials and applications to Spectral Line Broadening

Gillian Peach

Department of Physics and Astronomy, University College London

- Interatomic Potentials; their Modelling and Accuracy
- Spectral Line Broadening; Validity of Van der Waals Formula

Interatomic Potentials

 Large quantum chemistry calculations provide very accurate potentials for electronic states of atom-atom systems at short and intermediate separations.

Limited to low excited electronic states.

 Present problems involve low-energy scattering processes for excited electronic states.

Requirement: Accurate representation of potentials at medium and large interatomic separations.

Modelling of atom-atom system

• Three-body model: two atomic cores and one active electron, i.e. $A^{m+} + B^{n+} + e^{-}$.

Examples: $Na^+ + H + e^-$; $Na^{2+} + H^+ + e^-$.

• Electron-core interaction.

$$V_{a,b}(r) = -\frac{Z}{r}(1 + \delta + \delta' r) \exp(-\alpha r)$$
$$-\frac{z}{r} - \frac{\alpha_d}{2r^4} F_1(r) - \frac{\alpha_q - 6\beta_d}{2r^6} F_2(r)$$
$$+small\ energy\ term\ (optional)\ ,$$

where Z + z=nuclear charge, z = m, n and $F_1(r)$ and $F_2(r)$ are cutoff factors.

Parameters α , δ and δ' are varied to reproduce the positions of known energy levels for $z \neq 0$, and phase shifts for scattering for z = 0. The fits also predict the correct number of nodes in the wave functions.

• Core-core interaction.

$$V_c(R) \simeq -z_a^2 \frac{\alpha_d^b}{2R^4} - z_b^2 \frac{\alpha_q^a}{2R^6}$$

+short – range terms.

Options for short-range term.

- (a) Use the three-body model itself to generate potential.
- (b) Use simple analytic form based on perturbation theory.

Choices (a) and (b) differ only for $R \leq R_A + R_B$ where R_A and R_B are the mean radii of the cores A^{m+} and B^{n+} .

• Three-body interaction.

$$V_3(\mathbf{r}, \mathbf{R}) \simeq \frac{\alpha_d}{r^2 R^2} P_1(\hat{r} \cdot \hat{R}) + \frac{\alpha_q}{r^3 R^3} P_2(\hat{r} \cdot \hat{R}) + small\ energy\ term\ (optional)$$

for R large, where R is the internuclear separation. $P_1(\hat{r} \cdot \hat{R})$ and $P_2(\hat{r} \cdot \hat{R})$ are Legendre polynomials.

The model Hamiltonian.

$$H = -\frac{1}{2}\nabla^{2} + V_{a}(r_{a}) + V_{b}(r_{b}) + V_{c}(R) + V_{3}(\mathbf{r_{a}}, \mathbf{R}) + V_{3}(\mathbf{r_{b}}, \mathbf{R})$$

where r_a and r_b are the position vectors of the electron relative to cores A and B. A set of atomic basis states on one or both centres is used and the Hamiltonian matrix diagonalized to obtain the electronic energies.

Principles and Problems

- (a) The long-range interactions are based on well-known perturbation theory.
- (b) No existing data for the molecule is used to fix any variable parameters.
- (c) Positions of virtual states in electron-core model potentials are sensitive to precise fit.
- (d) Model potentials can be I-dependent or I-independent.
- (e) A different potential may have to be used for ground states, e.g. $He(1s^2)$.

Potential calculations in progress

- Extensive tests are being carried out on the Na*-H system. Quantum chemistry calculations exist for some electronic states which are being used to assess the accuracy of the present calculations at short range.
- T. Leininger, F.X. Gadéa and A.S. Dickinson, J.Phys.B: At.Mol.Opt.Phys. **33**, 1805-17 (2000); R.E. Olson and B. Liu, J.Chem.Phys. **73**, 2817-24 (1980).

There is much less information available for the Ne*-Ne and Ar*-Ar systems and within the current model there is no allowance for the homonuclear symmetry. Input data for the three-body model is ready, but awaits the completion of the Na*-H investigation.

Spectral Line Broadening

ullet Lindholm Impact Theory. The collision is treated semi-classically. The half-half width w and shift d are given by

$$w + \mathrm{i} d = 2\pi N \{ \int v f(v) dv \int_0^\infty [1 - \exp(\mathrm{i} \eta)] \rho d\rho \}_{Av}.$$

where 'Av' denotes an average over degenerate components of the line and f(v) is the Maxwell distribution. The phase shift η is obtained from

$$\eta(\rho,v) = -rac{1}{\hbar} \int_{-\infty}^{\infty} V(t) \, \mathrm{d}t$$

For Van der Waals broadening V(t) is replaced by $-C_6/R^6(t)$, a straight-line path for the relative motion is assumed and the integrals can be evaluated analytically.

G. Peach, Adv. Phys. 30, 367-474 (1981).

Quantum mechanical Impact Theory. We make the transition

$$(Mv\rho)^2 \to \hbar^2 l(l+1).$$

Then

$$2
ho \mathrm{d}
ho
ightarrow rac{\hbar^2}{(Mv)^2} (2l+1)\Delta l \, ,$$

the integral over ρ is replaced by a sum over l and

$$\eta(\rho, v) \to 2 \left[\eta_i(l, v) - \eta_f(l, v) \right],$$

where $\eta_i(l,v)$ and $\eta_f(l,v)$ are elastic scattering phase shifts.

- ullet Born Impact theory. Born approximation is used for η_i and η_f , i.e. plane waves for the scattering wave functions plus first-order perturbation theory.
- G. Peach and I.B. Whittingham, SCSLSA7, New Astronomy Reviews, in press (2009).

Transition Li $2p^2P-2s^2S$ at 670.97 nm.

Half half-widths w/N (in units of $10^{-21} \rm MHz$ m³/atom = $(2\pi)^{-1} \times 10^{-9} \rm rad~s^{-1}~cm^3/atom$)

T(K)	Impact	Born Impact	Van der Waals
	Theory	Theory	Theory
70.0	0.1476	0.1015	0.0847
80.0	0.1546	0.1074	0.0882
100.0	0.1674	0.1180	0.0943
200.0	0.2184	0.1584	0.1161
300.0	0.2567	0.1883	0.1311
500.0	0.3147	0.2342	0.1528
700.0	0.3599	0.2702	0.1690
1000.0	0.4151	0.3145	0.1881
1500.0	0.4882	0.3734	0.2124
2000.0	0.5477	0.4217	0.2316
2500.0	0.5985	0.4634	0.2476
3000.0	0.6433	0.5004	0.2615

Transition Na 3p²P-3s²S at 589.36 nm. Half half-widths w/N (in units of 10^{-21} MHz m³/atom = $(2\pi)^{-1} \times 10^{-9}$ rad s⁻¹ cm³/atom)

T(K)	Impact	Born Impact	Van der Waals
, ,	Theory	Theory	Theory
70.0	0.1504	0.1174	0.1097
80.0	0.1590	0.1242	0.1142
100.0	0.1745	0.1367	0.1221
200.0	0.2312	0.1839	0.1504
300.0	0.2714	0.2188	0.1698
500.0	0.3320	0.2723	0.1979
700.0	0.3793	0.3144	0.2190
1000.0	0.4374	0.3662	0.2437
1500.0	0.5149	0.4354	0.2752
2000.0	0.5779	0.4922	0.3000
2500.0	0.6319	0.5411	0.3208
3000.0	0.6795	0.5846	0.3388

Transition Na $3d^2D-3p^2P$ at 819.32 nm.

Half half-widths w/N (in units of $10^{-21} \rm MHz$ m³/atom = $(2\pi)^{-1} \times 10^{-9} \rm rad~s^{-1}~cm^3/atom)$

T(K)	Impact	Van der Waals
	Theory	Theory
70.0	0.2505	0.2035
80.0	0.2642	0.2118
100.0	0.2891	0.2265
200.0	0.3853	0.2789
300.0	0.4559	0.3149
500.0	0.5607	0.2671
700.0	0.6411	0.4061
1000.0	0.7384	0.4519
1500.0	0.8649	0.5104
2000.0	0.9639	0.5564
2500.0	1.0450	0.5949
3000.0	1.1137	0.6284