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possible companion HUbble Space Telescope
galaxy Wide Field / Planetary Camera

Ground-Based Optical/Radio Image HST Image of a Gas and Dust Disk

Extended radio sources — shown is an FRII The host galaxy. Although shown as an early
source with an edge-brightened structure. The type galaxy with a smooth profile, it could also
FRIs have lower jet velocities and fade-out to be highly irregular with multiple nuclei as a
the ends. result of merging.
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The central kpc star formation disk. This strong The narrow-line region comprising small but
far infrared emitting zone might be fed by abar ~ numerous clouds of the interstellar medium
structure, as seems to be the case for NGC1068. ionized by the central AGN core.

Fig. 9.9 Cartoon of the representative scale sizes of an AGN. Hrm we ;\.':.nluall\' see the nh]t'Ui
depends on a number of parameters, the main one being th :

with respect to the o ser. { Adapted from Blandford, Ac

Advanced Course 20, Springer—Verlag, 1990.)

R. Blandford



The outer extent of the broad-line region and the
deep-walled molecular torus which can provide

an effective shield of the central AGN,
depending on the relative orientation of the
observer.
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The accretion disk which radiates strongly at
UV and optical wavelengths. The high
ionization clouds of the BLR are excited by the
central continuum radiation field.

extended thin
accretion disk

Inside the molecular torus — the VLBI jet
becomes self-absorbed closer in, and the low
ionization lines of the BLR, which might be the
corona of the accretion disk.
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intense gravitational
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field region
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black hale N

The black hole. The Schwarzschild radius for a
10* M black hole is 2 AU (1073 pc). The spin
will introduce twisted magnetic field lines and

particle acceleration.

radius:
- 10 ...10"* pc
-1 .... 100 light days

at a dist. of 50 Mpc (Virgo):
spatial resolution

4 x10>...4x103"
(0.04 ... 4. mas)

unresolved

R. Blandford




High lonization Lines
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Fig.13. A schematic two-component model for the BLR. The high ionization lines are emit-
ted in a spherical system of clouds, and are excited by the direct ultraviolet radiation of the
central source. The low ionization lines come mainly from the outer regions of the central
disk, where most of the line excitation is due to back-scattered, hard ionizing photons. (Af-
ter Collin-Souffrin, Perry and Dyson(1987), Collin-Souffrin (1987) and Dumont and Collin-
Souffrin (1990))

Two component BLR?
Collin-Souffrin et al., 1990

EMMERING, BLANDFORD, & SHLOSMAN

Radiatively accelerated clouds
In hydromagnetic wind?
Emmering, Blandford, Shlosman,1992
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geometry, kinematics?
Narrow Line Region (~100-1000pc)



-Extension, Structure

-Geometry

-and Kinematics of the central
Broad Line Region in AGN

- Black Hole Mass

IN NGC5548, Mrk926, Mrk110

Intermediate, broad-line, narrow-line Sey 1
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JD2447643 (high state)

JD2448733 (low state)
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BLR stratification Delay by light travel time effects
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stratification in NGC5548

higher ionized lines: - broader line widths
- faster response
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Mrk110
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lityacampaign of Mrk110

Mrk110 spectra taken between
1999 Nov. and 2000 May
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at McDonald Observatory
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Mean spectrum of Mrk110

for 24 epochs from Nov. 1999 through
May 2000

Rms spectrum

- the rms spectrum shows the
variable part of the spectrum

Kollatschny et al., 2001



Continuum and integrated
emission line (Balmer, Hell
and Hel) light curves

1999 Nov. - 2000 May

Kollatschny et al., 2001



Mkn110

CCF functions of Hell, Hel and
Balmer line light curves with
continuum light curve.
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.. Hel 5878

. Hell 4688

T [light days]

5000

-4000 -2000 0 2000 4000
v [km/s] v(FWHM) [km/s]

Normalized rms line profiles in Mean distances of the line emitting
regions from central ionizing source

velocity space
as function of FWHM in rms profiles.

The rms spectrum shows the The dotted and dashed lines correspond to
virial masses of .8 - 2.9 10’'M

variable part of the spectrum
(from bottom to top).




Assumption:
emission line clouds
are gravitationally
bound by central
object

M — f Vi FwHM €

G

-4000 -2000 0 2000 4000
v [km/s]

cT = mean dist. of Normalized rms line profiles in velocity space
line em. clouds

Line FWHM (rms) Teent M
. : [km s~ [days] [107Mg)]

V = vel.disp. of clouds (1) ) 3) ()

(from rms [ine WIidth) [T T

HelIA4686  4444. + 200  3.573  2.25%.52
HelA5876 2404. + 100  10. 8*4: 1. 81+1 3“
f = factor (2 - 5.5) HJ 1515. + 100 23574 1637039
(unknown geometry Ha 1315. + 100 32.51%  1.6410:33

and kinematics)
Kollatschny et al., 2001, 2003
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tyacampaign of Mrk926

Mrk926 spectra taken between
2005 June and 2005 Dec.

F, [10-15 erg s~! em~2 A-1]
Fp [10715 ergs~! em~2 A-1]

53650
JD (+2400000)

9.2m Hobby-Eberly Telescope at
McDonald Observatory
S/N >100



Mrk926
mean 2004/05

rms(x8)

for 15 epochs from June 2005 through

Dec. 2005 - the rms spectrum shows the

variable part of the spectrum

Kollatschny et al., 2009 in prep



Mrk926 Mrk926
i

Normalized mean and rms line profiles in velocity space

- the rms spectrum shows the
variable part of the spectrum

Kollatschny et al., 2009 in prep



Lightcurves ot Mrk926
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tiire and BH mass in Mrk926

CCF functions of Balmer line light
curves with respect to the
continuum light curve.

con4600
—— conb5180auto

BLR temporally not resolved

-mean distance of Hp line emitting
region: 0.5 =1 light day

-Ha: 1.6 = 1 light day

v = vel.disp. of clouds (from line
width) ~ 8 600 km/s

BH mass~ 1. - 3. «10’'M, (f=1.5)

Kollatschny et al., 2009 in prep.




lineraveraged BLLR size in AGN

Q = hydrogen-
lonizing photons
FITEXY 35 points I
S i emitted per sec
—— FITEXY 33 points
---- BCES 33 points
- Slope fixed to 0.5
( Mrk926
AL, (5100 A)
Relationship between luminosity and broad-line region size
R —~ LO.65
BLR

But intrinsic scatter due to: BLR density, column density, ionizing
spectral energy distribution, ....? Kaspi et al. 2004



3olometric luminosity
10* 10% 10%

wn
%]
[72]
7))
£
T
]
]
=]
wn
72}
72}
£
2]
o
=]
=
=
&
]
oy
Ea

1043 1044 1045
Optical luminosity AL, (51004)

BH mass for 35 reverberation mapped AGN.

--- : lines of constant mass to luminosity ratio Peterson et al., 2004
open circles: NLSy1l



segments in Mrk926

Mrk926

Ho and HB rms
profiles in Mrk926

Velocity-delay map of Ha

Grey scale: response of line segments

Fig.15. The 2-D CCF(r,v) shows the correlation of the Ha line seg-
ment light curves with the continuum light curve at 5180,A as a fune-
tion of velocity and time delay (grey scale). Contours of the correla-

tion coefficient are overplotted at levels of 0.85, 0.75, and 0.65 d
lines). The heavy dashed line connects the centers of all individual cross-
correlation functions.

time delay [deys]

BLR temporally not resolved

v IKn/e] Kollatschny et al., 2009 in prep.
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profiles in Mrk926
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Influence of BLR motions on line profile variations

to observer
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Y  now also includes
information on
the velocity flow

The velocity information
is essential: it breaks the
degeneracy in the geometry.
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Horne et al., 2004
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Mean Hf line profile of
Mrk110 in velocity space

Light curves of the
continuum, of the Hf3
line center, and of
different blue and red
line wing segments

AV = 400 km/s

Kollatschny & Bischoff 2002
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Mean Hf line profile of

Mrk110 in velocity space Velocity-delay map

Kollatschny 2003a



2-D CCF : correlation of HP3 line
profile segments with cont.
variations (grey scale)

Contours of correlation coefficient
at levels of .85 to .925 (solid
lines).

time delay [day=]

Dashed curves: theoretical escape
velocity envelopes for masses of 0.5,
1., 2. 10" M, (from bottom to top).

Echo image

v [km /=]

Velocity-delay map Kollatschny 2003a

Theoretical velocity-delay maps for different
flows: Keplerian disk BLR model: fast response of

both outer line wings
Welsh & Horne 1991, Horne et al. 2004
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2-D CCF : correlation of HB, Hel, Hell
line profile segments with continuum
variations (grey scale).

Kollatschny 2003

Keplerian disk BLR model: fast

response of both outer line wings
Solid line: innermost radius at 5 Id
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Time delay of blue line wing to red
line wing as function of dist. to line

center
Outer line wings: inner BLR

2-D CCF: velocity-delay map

Disk wind model of BLR: Slightly faster and stronger resonse of
red wing Chiang & Murray, 1996

Disk driven outflow models compared to spherical wind models:
velocity decreases with radius (rather than the other way around)
Koenigl & Kartje, 1994



and Kinematics in Mrk110

irrzed gas

Broad-Line Hepion

Fii. 13 —5chematic representation of how a disk-driven hvdromagnetic

wind, which is characterized by a highly stratified density distribution, inter-

- acts with the active galactic nucleus (AGN) continuum emission, The inner-

BH: 5w 107 M’;: most regions are heated and ionized by the powerful radiation field, with the

et temperature and degree of ionization varying both with distance and with the

polar angle, whereas the outer regioms (beyond the dust sublimination radius)

are cooler and contain dust, The radiation pressure force on the dust causes
the outer streamlines to have a larger opening angle

Koenigl & Kartje 1994

accretion disk wind in Mrk110

Kollatschny 2003a
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