Observational and modeling techniques in microlensing planet searches

Dijana Dominis Prester

7.8.2007, Belgrade

Simulating synthetic data

Fitting

Optimizing

$$q = 0.3$$

 $i = 45^{\circ}$
 $d = 1R_E$
 $R_* = 10R_{Sun}$
 $(x_1, y_1) = (460,65)$
 $(x_2, y_2) = (285,853)$

$$q=0.3$$
, $i=45$ °, $d=1R_E$

Modeling a Synthetic Light Curve

Standard deviation
$$\sigma_m = \sigma_0 \frac{1}{1 + \Delta m}$$
 (errorbars): $\sigma \in [\sigma_0, \sigma_{\min}]$

Gaussian scatter Noisy data

Picking random data points (i.e. 30 out of 100)

Irregular data coverage

Fitting the light curve by using an inverse χ^2 optimization method)

$$q=0.3$$
, $i=45$ °, $d=1R_E$

$$q=0.3$$
, $i=45$ °, $d=1R_E$

Chi square test

Chi squared per degrees of freedom:

$$\chi^{2}/d.o.f. = \frac{\sum (x(t)_{obs} - x(t)_{theor})^{2}}{n_{data} - n_{parameters} + 1}$$

(close to 1 for a good fit)

30 out of 100 data points

$$\sigma_0 = 0.03 mag$$

$$\sigma_{\min} = 0.018 mag$$

$$A_{\text{max}} = 1.71$$

$$u_0 = 0.68$$

$$t_0 = 0.23P$$

$$t_{\text{max}} = 0.5F$$

$$\chi^2 / d.o.f. = 1.16$$

q=0.3i=45d=0.6

Phase: 0.25

Phase: 0.47

Phase: 0.75

Phase: 1.00

Orbiting binary (P=100 days) with separation of 0.6 R_E

Orbiting binary (P=100 days) with separation of 0.6 R_E

Misinterpretation even with High quality data is possible!

Static approximation

Periods of Binary Systems

- A large fraction of the Galactic stars are in binary systems
- Gaussian-like distribution in *log P* with maximum around 10⁴ days
- (between 1 day and 10^{10} days)
- Long period binaries (P > 100 days):
 more binaries with high mass ratios

Distribution of binary periods

Duquenney & Mayor (1991)

Time scales

- Orbiting binary
- Separation ~ A.U.
- Period P ~months/years
- Event duration ~ P
- Long lasting events

- Static approximation
- Short Einstein crossing times (~ days/weeks)
- Much more common

Statistic

- Percentage of fits with small χ^2
- 100 magnification patterns for each binary system
- n_{dp} data points (out of 100)
- 10000 light curves per realization

Binary mass ratio q

Static approximation (black line: single lens)

Easier to detect stellar binary lenses than planetary binaries!

Separation of the binary components d

(static approximation)

Separation of the binary components d

Microlensing is the most sensitive to separations around 1 Einstein radius!

(orbiting binary)

Size of errorbars

Number of data points (data sampling)

Better data quality increases the detection!

Summary of part I

- Statistical analysis
- Significant chance for misinterpretation of a binary lens by a single lens
- Higher probability for misinterpretation for short lasting events
- Separation and mass ratio play an important role:
- Minimum around 1 Einstein radius
- Probability for planet detection

Binary source - single lens model (BS-SL)

Superposition of two light curves:

$$F^{i}(t) = F_{A}^{i}A_{A}(t) + F_{B}^{i}A_{B}(t) + F_{blend}^{i}$$
• observing site *i*

- Optimizing code **BISCO** (Binary Source Code for Optimization, Dominis 2005) uses the genetic algorithm PIKAIA (Charbonneau 1995) to find the best solution:

$$\{t_E, u_0(A), u_0(B), t_0(A), t_0(B), F_A / F_B\}$$

$$j_{par} = (2n_{os} + 1)n_{pb} + 5$$

Binary source light curve (in magnitudes)

Genetic algorithm

- Numeric optimization of an inverse problem (one light curve => set of physical parameters)
- Uses natural selection (selection of parents, mutation, crossing, evolution)
- Useful for complicated parameter spaces with many local minima

- GENETIC ALGORITHM

(numeric optimization)

- evolution of a random initial population

FITNESS – selection criterion (probability for crossing and survival)

$$\chi^2/d.o.f.$$

(goodness of fit, sum of squared residuals)

A simulated binary source – single lens microlensing event

BISCO is capable of reconstructing the event parameters from simulated data

OGLE-2003-BLG-222 (I=19.9)

OGLE-2004-BLG-347 (I=17.5)

1'x1'

OGLE-2003-BLG-222

Binary source fit, GA (Dominis) Binary lens fit, Powell (Cassan)

OB-03-222 Binary source model

BINARY SOURCE MODEL:

```
Einstein ring radius crossing time: t_E = (68.4 \pm 1.1) days
Closest approach of the A component: u_0(A) = (0.0251 \pm 0.0012)R_E
Closest approach of the B component: u_0(B) = (0.0325 \pm 0.0007)R_E
Time of closest approach (A): t_0(A) = (2814.13 \pm 0.06) JD - 245000
Time of closest approach (B): t_0(B) = (2817.52 \pm 0.05)JD - 24500
Flux ratio F_A(I)/F_B(I): fr(I) = (0.965 \pm 0.094)
Baseline magnitudes in [mag] and blending factors for each site:
m_{base}(OGLE) = 19.94, g(OGLE) = 0.926
m_{base}(Danish) = 20.65, g(Danish) = 1.135
m_{base}(SAAO) = 21.01, g(SAAO) = 0.001
\chi^2/d.o.f. = 454/235
```

OB-03-222 Binary lens model

BINARY LENS MODEL:

Binary separation: $(d = 0.258^{+0.002}_{-0.026})R_E$

Mass ratio: $q = (0.1022^{+0.0748}_{-0.0007})$

Einstein ring radius crossing time: $t_E = (68.1^{+0.3}_{-7.6}) days$

Closest approach: $u_0 = (0.036^{+0.002}_{-0.0009})R_E$

Time of closest approach: $t_0 = (2815.64^{+0.01}_{-0.02})JD - 245000$

 $\Theta = (2.574^{0.001}_{0.01})rad$

Baseline magnitudes in [mag] and blending factors for each site:

$$m_{base}(OGLE) = 19.95, g(OGLE) = 0.694$$

$$m_{base}(Danish) = 20.68, g(Danish) = 0.926$$

$$m_{base}(SAAO) = 20.89, g(SAAO) = 0.000$$

$$\chi^2/d.o.f. = 487/235$$

OGLE-2004-BLG-347

Binary source fit (Dominis)

Binary lens fit (Cassan)

Time (days)

Degeneracy!

OB-04-347 Binary source model

BINARY SOURCE MODEL:

```
Einstein ring radius crossing time: t_E = (45.7 \pm 2.2) days
Closest approach of the A component: u_0(A) = (0.081 \pm 0.005)R_E
Closest approach of the B component: u_0(B) = (0.182 \pm 0.013) R_E
Time of closest approach (A): t_0(A) = (3219.63 \pm 0.06)JD - 245000
Time of closest approach (B): t_0(B) = (3205.45 \pm 0.16)JD - 245000
Flux ratio F_A(I)/F_B(I): fr(I) = (0.468 \pm 0.036)
Baseline magnitudes in [mag] and blending factors for each site:
m_{base}(OGLE) = 17.48, g(OGLE) = 1.422
m_{base}(Danish) = 16.92, g(Danish) = 1.494
m_{base}(SAAO) = 17.66, g(SAAO) = 2.078
m_{base}(Hobart) = 17.99, g(Hobart) = 1.605
m_{base}(Perth) = 17.49, g(Perth) = 1.510
\chi^2/d.o.f. = 1221/552
```

OB-04-347 Binary lens model

BINARY LENS MODEL:

```
Binary separation: (d = 3.0717^{+0.001}_{-0.0009})R_E
```

Mass ratio: $q = (0.74969^{+0.000003}_{-0.0001})$

Einstein ring radius crossing time: $t_E = (50.082^{+0.005}_{-0.004}) days$

Closest approach: $u_0 = (0.5902^{+0.0002}_{-0.0002})R_E$

Time of closest approach: $t_0 = (3254.58 \pm ^{+0.001}_{-0.0}) JD - 24500$

$$\Theta = (2.42171^{+0.00005}_{-0.00002})rad$$

Baseline magnitudes in [mag] and blending factors for each site:

$$m_{base}(OGLE) = 17.47, g(OGLE) = 0.510$$

$$m_{base}(Danish) = 16.90, g(Danish) = 0.593$$

$$m_{base}(SAAO) = 17.64, g(SAAO) = 0.943$$

$$m_{base}(Hobart) = 17.97, g(Hobart) = 0.683$$

$$m_{base}(Perth) = 17.47, g(Perth) = 0.596$$

$$\chi^2/d.o.f. = 1171/552$$

Flux ratio method applied on OB-04-347

Ambiguity in the light curve solution

 Is there a limit on chi-squared-perdegree-of-freedom difference to decide about the model to be accepted?

$$\Delta \chi^2 / d.o.f.(OB - 03 - 222) = 14\%$$

 $\Delta \chi^2 / d.o.f.(OB - 04 - 347) = 1.7\%$
 $\Delta \chi^2 / d.o.f.(OB - 05 - 390) = 7.3\%$

 Or do we need a merit of fit adjusted to the relative "sizes" of the two peaks?

Synthetic "realistic" light curve (black) (Gaussian noise, irregular data sampling)

Best fit (red line) to the synthetic data (black)

$$q=0.3$$
, $i=45^{\circ}$, $d=1R_{E}$

$$\sigma_0 = 0.03 mag$$

$$\sigma_{\min} = 0.018 mag$$

30/100 data points

$$A_{\text{max}} = 1.73$$

$$u_0 = 0.67$$

$$t_0 = 0.18P$$

$$\chi^2 / d.o.f = 1.32$$

Single Point Mass Lens

Einstein radius:

$$R_E = \sqrt{\frac{4GM_{tot}D_{LS}}{c^2D_LD_S}}$$

Microlensing:

the source and the images cannot be resolved

$$\phi = -\frac{GM}{r}$$

$$\vec{\alpha}' = \frac{4GM}{c^2 u^2} \vec{u}$$

$$\vec{\theta}D_S = \vec{\beta}D_S + \vec{\alpha}'D_{LS}$$

$$\vec{lpha} = \frac{D_{LS}}{D_S} \vec{lpha}'$$

$$\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$$

Gravitational potential

u – angular distance of the light ray from the mass

Lens equation

for *n* point masses:

$$\vec{\alpha}(\vec{x}) = \frac{4G}{c^2} \sum_{i=1}^{n} m_i \frac{\vec{x} - \vec{x}_i}{|\vec{x} - \vec{x}_i|^2}$$

$$\vec{x} = \frac{\vec{\theta}}{\theta_E},$$

$$\vec{y} = \frac{\vec{\beta}}{\theta_E}$$

$$\vec{y} = \vec{x} - \sum_{i=1}^{n} m_i \frac{\vec{x} - \vec{x}_i}{|\vec{x} - \vec{x}_i|^2}$$

Critical curves

Caustics

