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Examples

Predictions from INLA for input starlight age of NGC 0309 when 100, 75, 50, 25 and 5% 
(left to right) of the data is used. Upper panels show the starlight input, bottom the INLA 
prediction (source, González-Gaitán et al. (2018)).
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Examples

Predictions from INLA for Hα EW map of NGC 0309 with S/N of 10, 2, 1, 0.5 and 0.3 
(left to right). Upper panels show input and bottom panels INLA predictions (source, 
González-Gaitán et al. (2018)).
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Examples

Probability maps of NGC 0309 for three ranges of age, log(t[yr]), arranged 
anticlockwise: log(t[yr])>9.5, 9.3>log(t[yr])>9.0 and log(t[yr]<8.9. The bins were 
chosen to represent bottom (<2.5%), middle (32%−68%) and top (>97.5%) quantiles 
of the reconstructed population age map (source, González-Gaitán et al. (2018)).
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Introduction
Bayesian Statistics

Let x be a latent field and y an observable

● Prior density:  π(y|x)

● Posterior density:  π(x|y)  

● Joint density:  π(x,y) = π(x)·π(y|x) = π(y)·π(x|y) 

● Marginal posterior density:  π(xi|y) =      (x|y)dx-i∫ π
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Introduction
Latent Gaussian Models (LGMs)

● Bayesian Additive Models (BAMs)
● yi is assumed to belong to an exponential family with mean μi

● yi is linked to a structured additive predictor, ηi, via a link function g(.), such that 
g(μi)=ηi, where

                                                                                 (1)

● LGMs are a subset of BAMs, with a predictor as (1) and which assign a 
Gaussian prior to α, {f(j)(.)}, {βk} and {εi}.

● Applications: relaxation of regression models, dynamic models (ut), spatial 
models (us), ...

ηi=α +∑
j=1

nf

f ( j )
(u ji)+∑

k=1

n β

βk zki+εi
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Introduction
Latent Gaussian Models (LGMs)

● Notation
● π(.|.) - conditional density of its arguments

● x - all n Gaussian variables {ηi}, {f(j)(.)}, {βk} and {εi}

● π(x|θ1) - is Gaussian with assumed zero mean, precision matrix Q(θ1), and 
hyperparameters θ1

● N(x; μ,Σ) - Gaussian density N(μ,Σ) at configuration x

●  π(y|x,θ2) - the distribution for the nd observables y (assumed conditionally 
independent given x and θ2)

● θ=(θ1,θ2)T, with dim(θ)=m
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Introduction
Latent Gaussian Models (LGMs)

The posterior then reads:  
●  

 

● Properties (satisfied by many LGMs but not all)
● Latent field x admits conditional independence properties, making it a 

Gaussian Markov random field with a sparse precision matrix Q(θ)

● The number of hyperparameters, m, is small (m ≤ 6)

Both are usually required to produce fast inference

π (x ,θ∣y )∝π (θ )π ( x∣θ )∏
i

π ( y i∣x i , θ )¿¿

.∝π (θ )|Q(θ)|
1/2exp (−

1
2

xT Q(θ )x+∑
i

log (π ( y i∣xi , θ )))
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Introduction
Inference

● Aim: infer posterior marginals for π(xi|y), π(θ|y) and π(θj|y) 

● Possibilities:
● Markov Chain Monte Carlo

● Poor performance when applied to LGMs

● Deterministic approximations

● Better computational cost
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INLA
A different approach

● The posterior marginals of interest can be written as

● INLA (Rue et al. (2009)) uses this form to construct nested approximations

where    (.|.) is an approximated density of its arguments and the integrations 
are performed numerically. The Laplace approximation of π(θ|y) is given by 

                                                                        (2)

~π

~π (θ∣y)∝
π (x , θ , y )
~π G(x∣θ , y )

∣ ¿
x=x∗(θ)

¿

π (θ j∣y)=∫ π (θ∣y )d θ− j

~π (θ j∣y )=∫~π (θ∣y)d θ− j

π (x i∣y )=∫ π (x i∣θ , y )π (θ∣y )d θ

~π (x i∣y )=∫~π (x i∣θ , y)~π (θ∣y )d θ
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INLA
The Method

1) Exploring

a) locate mode of             , θ*:  using the difference between successive 
gradient vectors, approximate second derivatives of                       ;

b) at θ* compute the negative Hessian matrix H > 0 and let Σ = H-1;
use standardized variables z instead of θ, using the form

c) explore                      : start from the mode (z = 0); go in the positive 
direction of z1 with step δz, while

                                                                                                              (3) 

then switch direction; treat the remaining coordinates in the same way (fig. 1) 

~π (θ∣y)

~π (θ∣y)
log (~π (θ∣y))

log (~π (θ∣y))

θ ( z)=θ∗+V Λ1/2 z

log (~π (θ (0)∣y ))−log (~π (θ (z )∣y ))<δ π
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INLA
The Method

Fig. 1 - Illustration of the posterior marginal for θ: in (a) the mode is locate and the 
Hessian and co-ordinate system for z are computed; in (b) each co-ordinate direction is 
explored (•) while (3) prevails; new points (•) are explored combining coordinates of (•) 
(source: Rue et al. (2009)).
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INLA
The Method

d) use computed before to construct an interpolant to                       and 
compute marginals using numerical integration from this interpolant

2- Approximating

a)  Approximate the modal configuration
                                                                                                     (4) 

b) Define a ROI around i, R
i
(θ), for only those x

j 
‘close’ to x

i 
should have an 

effect on its marginal;

c) Consider the Laplace approximation

                                                                                                      (5)  

log (~π (θ∣y))

π (x i∣θ , y )π (x i∣θ , y )

x−i∗(x i , θ)≈E ~π G
(x− i∣x i)

~πLA (x i∣θ , y )∝
π (x ,θ , y )

~π G(x− i∣x i ,θ , y )
∣ ¿

x−i =x−i∗( xi , θ)
¿
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INLA
The Method

d) derive a simplified Laplace approximation                        by doing a series 
expansion of                       around x

i
 = μ

i
(θ) 

e) expanding the log densities of both numerator and denominator in (5)  
around x

i
 = μ

i
(θ), we get

                                                                                                                     (6)

 

~πSLA (x i∣θ , y )
~πLA (x i∣θ , y )

log ( ~π SLA (x i
s
∣θ , y ))=constant−

1
2
(x i

s
)

2
+γ i

(1)
(θ) x i

s
+

1
6
( xi

s
)

3 γi
(3)

(θ )+ ...
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INLA
The Method

where
 

γ i
(1 )

(θ )=
1
2 ∑

j∈ I ∖ i

σ j
2
(θ ){1−corr ~πG

(x i , x j)
2
}d j

(3)
{μi(θ ) , θ}σ j(θ )aij(θ )

γ i
(3 )

(θ )= ∑
j∈I ∖i

d j
(3)

{μi(θ ) , θ}{σ j(θ )aij (θ )}
3

d j
(3)

(x i , θ )= ∂3

∂ x j
3 log {π ( y j∣x j , θ )} ∣x j=E ~π G

(x j∣x i)
¿

x i
s
=

x i−μi(θ)

σ i(θ )
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INLA
The Method

f) finally, fit a skew normal distribution of the form (7) to (6) so that the third 
derivative at the mode is      , the mean is        and the variance is 1.

(7)

ϕ(.) - density function
Φ(.) - distribution function

a - skewness parameter
ξ - location parameter

ω - scale parameter

πSN (z)=
2
ω

ϕ (
z−ξ

ω
)Φ (a

z−ξ
ω

)

γ i
(3 ) γ i

(1 )
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INLA
Applications in Astronomy

IC 1396, inferred data IC 1396, real data

(source, Garcia et al. (2020))
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INLA
Applications in Astronomy

NGC 2451A, inferred data NGC 2451A, real data

(source, Garcia et al. (2020))
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INLA
Applications in Astronomy

ASASSN15db_agel 
real data

ASASSN15db_agel
5% sampling of real data

ASASSN15db_agel
INLA reconstruction
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INLA
Applications in Astronomy

PTF11qnr_agel
real data

PTF11qnr_agel
5% sampling of real data

PTF11qnr_agel
INLA reconstruction
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INLA
Present

● INLA + Monte Carlo Radiative Transfer (MCRT)

1) Generate low resolution simulations of radiative transfer using MC

2) Preprocess output files 

3) Feed results as priors to INLA

4) Get high resolution posteriors in a fraction of the time



Thank you
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